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Abstract 

 
We evaluate a pilot in an Inspections Department to explore the returns to a pair of algorithms 
that varied in their sophistication. We find that both algorithms provided substantial prediction 
gains, suggesting that even simple data may be helpful. However, these gains did not result in 
improved decisions. Inspectors used their decision authority to often override algorithmic 
recommendations, partly to consider other organizational objectives without improving 
outcomes. Interviews with 55 departments find that while many ran similar pilots, all provided 
considerable decision authority to inspectors, and those with sophisticated pilots transitioned to 
simpler approaches. These findings suggest that for algorithms to improve managerial decisions, 
organizations must consider the returns to algorithmic sophistication in each context, and 
carefully manage how decision authority is allocated and used.  
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1. Introduction 

Organizations are increasingly interested in using algorithms to support decision-making, in 

contexts as diverse as selecting applicants to hire, identifying promising innovations, and 

making resource investment decisions (e.g. Agrawal, Gans, & Goldfarb, 2018; Cowgill, 2019; 

Choudhury, Starr, & Agarwal, 2020). The potential for algorithms to improve prediction was 

demonstrated as early as the 1950s (e.g., Meehl, 1954; Dawes, 1979; Grove & Meehl, 1996; 

Kahneman et al, 2016), and firms today increasingly invest in data and algorithmic 

sophistication (Brynjolfsson & McElheran, 2019; Bajari, Hortaçsu, & Suzuki, 2019). Even so, 

evidence suggests that many firms may not be seeing the returns to their investments 

(Brynjolfsson, Jin, & McElheran, 2021; Ransbotham et al., 2019).1   

This raises a question on the extent to which the use of algorithms ultimately translates into 

improvements in decisions in organizational contexts. While a general assumption is that more 

information and computation will lead to more accurate decisions (Gigerenzer et al., 1999; 

Agrawal et al., 2018), there are at least two key reasons why this may not be the case. First, it 

may be that for certain managerial problems, the returns to algorithmic sophistication in terms 

of prediction are limited, given the degree of uncertainty involved and the power of simple 

heuristics (e.g. Sull & Eisenhardt, 2015).  

Second, when leveraging data and algorithms, organizations decide not only whether to use 

them, but how. While some decisions can be fully automated, many managerial decisions 

involve judgment beyond prediction (Agrawal et al., 2018; 2019; Cowgill, 2019; Choudhury et 

al., 2020; Raisch & Krakowski, 2020). In such cases, algorithms provide predictions that 

decision-makers may take as inputs, as they choose to use algorithmic recommendations as a 

decision aid, rather than a decision rule. Decision-makers may thus use their decision authority 

 
1 Across a survey of more than 2,500 executives, “seven out of 10 companies surveyed report minimal or no impact from 
artificial intelligence (AI) so far. Among the 90% of companies that have made some investment in AI, fewer than 2 out of 5 
report business gains from AI in the past three years… this means 40% of organizations making significant investments in AI 
do not report business gains from AI” (Ransbotham et al., 2019).  
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to make a decision that does not leverage potential prediction gains from algorithms—either 

because they are balancing other organizational objectives beyond the predicted measure, or 

because they end up dissipating informational gains through their discretion. Evaluating how 

decision-makers use their discretion when faced with data-driven inputs is thus an important 

step in understanding the impact of algorithms for organizations (Athey, Bryan, & Gans, 2020).  

In this paper, we evaluate the returns to algorithms on managerial decisions within a real 

organizational context, and explore these two factors. We compare the performance of human 

predictions to algorithmic ones, and further compare two algorithms with varying degrees of 

sophistication: one based on simple historical averages, the other based on a random forest 

model trained on both historical data from within the organization and additional data from 

online platforms. We find that algorithms indeed appear to provide substantial gains over 

human prediction. But, the greatest gains come from simply integrating data into the decision 

process, rather than from algorithmic sophistication. Moreover, these improvements in 

prediction do not translate into improved decisions. Decision-makers often reject data-driven 

recommendations, in part in consideration of other organizational objectives, but on average 

without balancing or improving upon them—suggesting that they may have used their decision 

authority to diminish potential gains from algorithms. These findings suggest that while 

organizations can improve decision-making from using algorithms, managing decision authority 

may be at least as important as investments in algorithmic sophistication or enhanced data 

collection, at least in these early days of putting algorithms to into practice. 

We evaluate the returns to algorithms on managerial decisions through an intervention 

implemented by an Inspectional Services department, where inspectors rely on their judgment 

to decide which restaurants to inspect. This setting offers a number of compelling attributes to 

test the power of predictive algorithms: (i) inspectors’ scarce time must be allocated with an 

uncertain but primarily predictive objective: identifying restaurants with more health violations; 

(ii) inspectors have secondary organizational objectives to consider that are clearly defined by 
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the department and measurable (i.e. reducing travel distance, targeting more overdue 

inspections, prioritizing more serious violations and popular restaurants); (iii) while inspectors 

possess informative experience and insight, there are historical administrative records and 

external data that raise the possibility of improving algorithmic sophistication (Lehman, 2014); 

and (iv) inspectors retain ultimate decision authority and carry out the inspections themselves.  

We compare three approaches to allocate inspectors: (1) inspector prediction (“business-as-

usual”), (2) a “data-poor” algorithm based on the average number of historical violations for 

each restaurant; and (3) a “data-rich” algorithm based on a random forest model trained on 

historical violations and Yelp data.2 Restaurants with the highest predicted likelihood of 

violations according to each approach were randomly sorted and provided as lists to inspectors 

to guide their inspections over four periods of two weeks each. This design allows us to observe 

counterfactual inspector predictions and their ultimate decisions, and offers insights into the 

gains from algorithmic sophistication in the field by comparing the two algorithms.  

Our results suggest substantial gains from predicting violations using algorithms, which 

identified restaurants with over 50 percent more violations than inspectors. Most gains came 

from integrating data into the process, with the data-poor algorithm providing improvements 

nearly as large as those from the data-rich algorithm. Given the difficulty of generalizing from 

this context, the main insight we draw from is that even simple data was valuable in improving 

predictions, and there may be similar managerial contexts where this is the case.  

However, these gains in prediction do not appear to have translated into improved decisions. 

Inspectors were only about two-thirds as likely to inspect algorithm-recommended restaurants 

relative to those that they had ranked highly, thereby dissipating much of the prediction gains. 

While inspectors varied in the extent to which they deviated from the algorithm, most inspected 

 
2 We use the term “data-rich” in a relative sense to the other algorithm. One can imagine using a vast set of other data that may 
yield higher-quality insights, which is beyond the scope of this paper. The motivation behind this treatment was to explore the 
extent to which richer data modeled in a more sophisticated way adds any marginal gain, given rising interest and investment 
in data and advanced technologies.  
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more restaurants that they prioritized compared to those by algorithms. Given this behavior, we 

also explore the possibility that selection could be driving the estimated gains from algorithmic 

inputs, but find little evidence that this can explain the full magnitude of the observed effects.   

We find some evidence that inspectors sought to improve the decision by leveraging their 

private knowledge on secondary organizational objectives. In particular, inspectors appear to 

have been sensitive to how overdue restaurants were. However, they did not ultimately make 

economically and statistically significant improvements on these secondary objectives when 

overriding algorithmic inputs. Inspectors did not on average inspect restaurants that were more 

overdue, and instead increased travel costs and targeted less severe violations – suggesting that 

they used their discretion to dissipate the gains from algorithms rather than improving on 

secondary objectives.  

While our analysis cannot fully pin down the mechanism, we find some anecdotal and 

exploratory empirical evidence consistent with the interpretation that inspectors may have 

rejected algorithmic recommendations when they conflicted with their priors on restaurant 

attributes that drive violations. Our findings thus raise the possibility that simple rules-of-

thumb developed in the presence of uncertainty can work against the introduction of algorithms 

to support decision-making. While other potential explanations such as algorithm aversion or 

social relationships with owners are possible, they are less likely to explain our results because 

of the particularities of this context: the department chose to not explicitly communicate that 

these recommendations were driven by algorithms, and inspectors were assigned to a different 

neighborhood every two years, providing little opportunity to build relationships. Nevertheless, 

these explanations are also broadly consistent with our finding that inspectors did not use their 

decision authority to improve the decision. 

To explore the extent to which our findings might generalize beyond our pilot department, 

we contacted inspectional departments serving the largest 200 metropolitan areas in the U.S. to 

conduct unstructured interviews. We interviewed 55 departments for up to one hour to 
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understand their decisions on using algorithms and decision authority. We found that only a few 

departments had run pilots using sophisticated algorithms, as most believed that they did not 

have sufficient data or technical capability, consistent with similar statements from C-level 

executives on data availability being their greatest challenge for using artificial intelligence (AI) 

(CognitiveScale, 2021). Furthermore, all departments gave inspectors considerable decision 

authority, citing the private knowledge they had that would help them better predict violations 

and balance other organizational objectives. However, departments using algorithms to guide 

their decisions faced similar issues as our pilot city, where many inspectors appeared to 

dissipate the informational gains from using algorithms.   

Together, our findings suggest that while organizations place much value in algorithmic 

sophistication relative to managing decision authority, the latter may merit a more serious 

consideration when seeking to use algorithms as decision aids. As firms increasingly make 

investments in data and AI, estimated at over $40 billion USD in 2020 and projected to double 

in the next few years, our findings offer relevant practical implications. While data and 

algorithms can provide substantial improvements in decision-making, the returns to algorithmic 

sophistication may be limited in some contexts, and potential gains may be dissipated by 

managers who are intended to oversee and improve algorithmic recommendations.  These 

findings suggest that organizations may need to think carefully about the returns to algorithmic 

sophistication in each context, and explore how decision-making processes can be redesigned to 

make use of managers’ private contextual knowledge.  

This study contributes to emerging research on algorithms and decision-making in 

organizations. Studies have examined various implications of advancements in AI on 

organizations (Felten, Raj, & Seamans, 2021; Choudhury et al., 2020; Tong, Jia, Luo, & Fang, 

2021; Brynjolfsson et al., 2021). While much work especially in psychology has explored how 

algorithms improve on human predictions and how individual preferences to rely on algorithms 

evolve (e.g. Dietvorst, Simmons, & Massey, 2015; Logg, Minson, & Moore, 2019) there has been 
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less insight from managerial contexts on how decision-makers within organizations use their 

decision authority and leverage their private contextual knowledge when using algorithms as 

decision aids. Given that the default arrangement across many organizations is to allocate final 

decision authority to managers so they can correct problematic algorithmic recommendations or 

better inform the decision according to broader organizational objectives, this study highlights a 

key factor that organizations may need to consider in realizing gains from using algorithms.  

Our work is most closely related to Hoffman et al (2018), which explores the impact of 

adopting a job testing technology on hiring and finds that managers who are more likely to hire 

against test recommendations make worse average hires. We build on these findings in two key 

respects. First, we explore the returns to algorithmic sophistication by comparing two 

algorithms with varying inputs, and find that algorithmic sophistication provides limited returns 

at least in this context. Second, we separate these prediction gains from improvements in 

decisions by explicitly examining how decision-makers use their discretion. While Hoffman et al 

(2018) infer whether managers may be more likely to hire against test recommendations, we 

directly observe and evaluate the extent to which decision-makers reject algorithmic 

recommendations and whether they are balancing other organizational objectives when doing 

so. Our findings suggest that while decision-makers override algorithms at least in part to 

consider other goals, they are not ultimately able to substantially improve upon them, 

suggesting that organizations need to better understand how decision-makers can apply their 

judgment usefully to improve decisions when working with algorithmic inputs. 

In addition to the literature on algorithms and decision-making, our analysis contributes to 

research on information technology investments and digital transformation more broadly. A 

growing body of work has identified organizational practices that shape the returns to 

investments in information technology (Bresnahan, Brynjolfsson, & Hitt, 2002; Bartel, 

Ichinowski, & Shaw, 2007; Bloom, Sadun, & Van Reenen, 2012; Brynjolfsson et al., 2021). Our 

findings point to organizational design challenges faced by organizations in deploying 
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information technologies in practice. While no single context fully generalizes to other settings, 

our study highlights that the design and management of decision authority can at least in some 

cases be more important than the sophistication of the data and algorithms themselves. 

2. The returns to algorithms on decisions in organizations  

While much research has examined the potential for algorithms to improve predictions, 

there has been less insight on how the use of algorithms ultimately translates into improvements 

in decisions within organizations. We explore the returns to algorithms on decisions within a 

real organizational context, and propose that the returns may be limited for managerial 

decisions due to the limitations of algorithmic sophistication and the role of decision authority.  

2.1 Algorithms as decision aids  

Recent developments in machine learning have enabled the use of algorithms in many 

contexts that were not previously possible, and organizations are increasingly interested in using 

algorithms to support their decision-making (Kleinberg et al., 2017; Cowgill, 2018; Choudhury 

et al., 2020). Machine learning algorithms can work with far more complex functional forms 

and data inputs, which has fueled growing interest in algorithmic sophistication via investment 

in more data and model complexity (Ludwig & Mullainathan, 2021). 

Much research highlights that algorithms can improve upon human prediction. Starting with 

Meehl’s (1954) review of forecasting studies showing that algorithms outperformed human 

experts, a long line of research has provided evidence that algorithmic predictions can reduce 

bias and increase consistency relative to human predictions (e.g., Dawes, 1979; Grove & Meehl, 

1996; Kahneman et al, 2016). The accuracy of algorithmic predictions over human predictions 

has since been documented across a large variety of domains, such as recidivism (Thompson, 

1952; Stevenson, 2017; Berk, 2017; Kleinberg et al, 2017), medical diagnoses (Dawes et al., 1989; 

Grove et al., 2000), and many others (Goodwin & Fildes, 2007; Vrieze and Grove, 2009).   

However, there has been less insight on the extent to which the use of algorithms as decision 

aids ultimately translates into improvements in managerial decisions. There is a general 
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assumption that more information and computation will lead to more accurate decisions 

(Gigerenzer et al., 1999). Yet despite growing investment into algorithmic sophistication, 

evidence suggests that firms may not be seeing the returns to their investments (Brynjolfsson et 

al., 2021), raising the possibility that this may not be the case. We propose that the returns to 

algorithms for managerial decisions may be limited, due to two possible mechanisms.  

2.2 Algorithmic sophistication and improvements in prediction  

One reason that the returns to algorithms may be limited for managerial decisions is that for 

many such decisions, more information and computation may not necessarily improve 

predictions. Research on heuristics finds an inverse-U-shaped relationship between accuracy 

and the amount of information or computation used (see Gigerenzer & Gaissmaier, 2011 for a 

review)—suggesting that in some cases, more sophistication may in fact be harmful for 

improving predictive accuracy (e.g. Czerlinski et al., 1999; Gigerenzer & Goldstein, 1996; Dhami, 

2003; Wubben & Wangenheim, 2008; Gigenrenzer & Brighton, 2009). This research highlights 

the bias-variance tradeoff, proposing that heuristics may be more likely to be accurate than 

complex strategies in contexts with higher uncertainty and redundancy where simpler methods 

with fewer free parameters may reduce variance (Gigerenzer & Gaissmaier, 2011).3  

Qualitative research in strategy has provided evidence consistent with this idea, suggesting 

that the use of simple rules can help organizations make better decisions (Bingham & 

Eisenhardt, 2011; Sull & Eisenhardt, 2015). This work highlights that organizations that develop 

and employ simple rules can reduce mental costs for decision-makers, increase clarity in the 

decision, and improve coordination across the organization. While this research does not 

examine the impact of data-driven decision tools or evaluate the returns to algorithmic 

 
3 A Bayesian interpretation of Occam’s razor, the principle that unnecessarily complex models should not be preferred to 
simpler ones, also provides quantitative support (MacKay, 1992). The basic underlying intuition is that while complex models 
can always fit the data better, simpler models can be the more probable model. While a more complex model with more free 
parameters can predict a higher variety of datasets compared to a simple model, Bayes rule rewards models in proportion to 
how much they predicted the data that occurred. Assuming that equal prior probabilities were assigned to the two models, the 
more complex model does not predict data sets in a given region as strongly as the simpler model that fits well. Rather, the 
simpler model is the more probably model, with higher posterior probabilities.  
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sophistication, their findings raise the possibility that simpler algorithmic decision aids may 

have the potential to help decision-makers as much as complex ones. 

As many decisions in managerial contexts often involve high uncertainty and redundancy, 

algorithmic sophistication may not provide substantial improvements in prediction. For 

example, resource allocation decisions are made regularly but with uncertainty about its impacts 

on performance, especially in the context of dynamically changing environmental factors. 

Similarly, integrating some data into the process as simple (though data-driven) rules of thumb 

may provide similar returns compared to additional technical sophistication.  

Thus, we propose that despite the increasing interest in technical investment, there may be 

limited returns to algorithmic sophistication for prediction in managerial decision contexts.  

2.3 The role of decision authority 

A second mechanism is that decision-makers may use their decision authority to make a 

decision that does not leverage potential prediction gains from algorithms. Most organizations 

today provide algorithmic recommendations as decision aids for managers who make the 

ultimate decision. The common reasoning for this is that managers have private knowledge to 

inform the decision and correct any problematic algorithmic recommendations, however rare.  

One reason why decision-makers’ ultimate decisions may not leverage potential prediction 

gains from algorithms is that decision-makers in organizations often balance multiple objectives 

to make their decisions (e.g. Obloj & Sengul, 2020). Even if algorithms provide better 

predictions, there may be other objectives to consider in making the decision that constrain 

their choices. Many decisions in organizations are complex with much richer objective functions 

than what can be captured by most algorithms (Ludwig & Mullainathan, 2021), and decision-

makers have contextual knowledge on these various objectives and the relative weights placed 

across them, which may vary dynamically (e.g. Gaba & Greve, 2019; Kim, 2021).  

This may mean that even when algorithms provide gains in prediction, decision-makers are 

not able to take advantage of them to improve their decision, because doing so may make the 
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decision worse on other dimensions. Even when algorithms provide better predictions, we may 

thus not observe any changes in the ultimate decisions, because doing so may be detrimental to 

other dimensions valued by the organization. An alternative way of characterizing this issue is 

that current versions of algorithms may have misaligned objective functions from true 

organizational objectives, which managers with decision authority can help correct. 

For example, in the context of resource allocation decisions for inspections, as examined in 

this paper, the primary objective is to identify businesses with the highest likelihood of 

violations. However, there are secondary objectives in place stated by the department that are 

clearly defined and measurable: reducing the costs associated with geographic travel distance, 

and targeting restaurants with more overdue inspections, as well as those that are more popular 

and committing more serious violations. While balancing these objectives may not translate into 

choosing businesses with the highest likelihood of violations as enabled by better prediction, it 

may ultimately be a better decision according to broader organizational objectives.  

Another way in which the same outcome may manifest is that managers actively dissipate 

informational gains using their discretion: they try to inform the decision with their private 

knowledge, but in doing so make a worse decision across the various objectives than algorithms. 

In this case, it is not that the manager chooses to reject an algorithmic recommendation because 

it would be detrimental to other objectives. Rather, it is that managers use their decision 

authority to make a worse decision across objectives than the one recommended by algorithms.  

It may be that this operates through some aversion to algorithms or to external advice. 

Growing research in psychology suggests that individuals—especially those with experience—are 

more likely to prefer their own forecasts over algorithmic predictions after seeing them err, even 

when algorithms are more accurate overall (Dietvorst et al., 2015; Logg et al., 2019).4 While a 

part of this effect may be driven by a negative reaction to algorithms, as found by Tong et al 

 
4 There has also been work on the implications of algorithmic usage or improvements in operational contexts like inventory 
and supply chain management. However, these generally do not focus on the interaction of algorithms with human decision-
makers, as algorithms in these contexts have generally been automated.  
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(2021) across employees who were informed that performance feedback was provided by an 

algorithm, other work proposes that this may also reflect a preference for one’s opinions over 

others’ advice (Logg et al., 2019). This is broadly consistent with extensive research on 

overconfidence (e.g. see Moore & Healy, 2008; Moore, Tenney, & Haran, 2015 for a review) and 

resistance to advice and change among professionals with specialized knowledge and strong 

norms (e.g. Kellogg, 2014; Greenwood et al., 2019). These insights suggest that even when 

algorithmic sophistication improves predictions, managers may not recognize their 

improvements and use their discretion to dissipate any potential informational gains.  

More broadly, this latter channel would suggest that it may be important for organizations to 

more seriously consider how to manage and allocate decision authority as a key factor for 

capturing any potential gains from algorithms, in addition to technical sophistication.  

2.4 Limited empirical insight from organizational contexts 

While these mechanisms are important to evaluate to understand how organizations can 

productively use algorithms as decision aids, there has been limited empirical insight. Much 

prior work on algorithms and decision-making has examined individual decision-makers in the 

laboratory, classroom, or online settings (e.g. Dietvorst et al., 2015; Yeomans et al., 2019; Logg 

et al., 2019; Choudhury et al., 2020). This work has tended to compare predictions between 

humans and algorithms, or individual preferences for algorithmic predictions, in non-

organizational contexts (a notable exception is Allen & Choudhury, 2021). While this work 

provides important insights on individual responses to algorithms, how the use of algorithms 

improves predictions and ultimate decisions in organizational contexts is less clearly addressed.  

Furthermore, prior studies have not explored how decisionmakers in organizations leverage 

their contextual knowledge on organizational objectives to inform decisions when faced with 

algorithmic inputs.5 This is striking, given that the default arrangement for working with 

 
5 Choudhury et al (2020) examine one source of private knowledge that also manifests in non-organizational contexts, 
individual domain expertise, which operates by enabling decision-makers to make better predictions, rather than how they 
make the ultimate decision. They provide evidence that graduate students examining patents who were provided with domain 
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algorithms in organizations is to allocate final decision authority to managers. Examining how 

decisionmakers in organizations use their contextual knowledge can thus provide valuable 

insights on the role of managing decision authority in capturing the returns to algorithms.  

In this paper, we empirically examine the returns to algorithms on managerial decisions, 

focusing on these two mechanisms. We evaluate them in a real organizational setting by 

experimentally testing the returns to algorithmic sophistication on prediction and observing the 

extent to which any prediction gains translate into improved decisions.   

3. Empirical Context 

We explore the role of algorithms in decision-making within the Inspectional Services 

department of a major metropolitan city in the United States (“the City”), which provided a 

compelling context to study decision-making in administrative organizations (Simon, 1947).  

The key decision we studied involved resource allocation, where inspectors used their 

judgment to decide which restaurants to inspect. The City employed approximately 20-30 

inspectors at any given time, who were assigned to at least one of 22 wards or “neighborhoods” 

and rotated across wards every two years.6 Inspections took approximately two to four hours, 

which limited the number of restaurants that could be inspected in a day. During this process, 

inspectors had a formal list of practices that they checked to evaluate the restaurant’s 

compliance with food safety regulations. For example, they used thermometers to check 

temperatures of cold food storage areas and evaluated employee hygiene (e.g., use of gloves, 

thawing practices). Checking each of these across all areas of the establishment, recording notes, 

and discussing with management to fix any immediate small issues could take substantial time. 

 
knowledge through advice from an experienced patent examiner were better able to identify applications that were strategically 
using new words and references to enhance the perceived novelty of their art—which algorithms were less able to identify 
based on the patent application text. This finding suggests that when machines are less able to make good predictions, 
individuals with domain expertise can correct them through their superior predictions.  
6 As there were 22 wards and no inspectors with more than 40 year of tenure, every inspector was similarly new to the ward 
that they were assigned to during the time of the experimental pilot. Larger wards were assigned to multiple inspectors, who 
subdivided the ward geographically.  
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Inspections yielded substantial variation in the violations found across restaurants. For 

example, inspections conducted between 2007 and 2015 uncovered 0 to 60 weighted violations 

per restaurant (Appendix Figure 1). The department assigned weights for violations based on 

their severity: Level I (1 point) corresponded to non-critical violations such as building defects 

or standing water. Level II (2 points) were critical violations more likely to create food 

contamination, illness, or environmental hazard. Level III (5 points) were considered “food-

borne illness risk factor[s]” such as insufficient refrigeration or a lack of allergen advisories on 

menus. When critical violations were found in a restaurant, the City temporarily suspended its 

food permit if the violations were perceived as representing an imminent public health risk. 

This context provided several research advantages. First, while the strategy of which 

restaurants to inspect may be complex, a key component involved predicting which ones will 

have violations, thereby raising the potential for algorithms to enhance decision-making. The 

main objective defined by the Head Inspector was to incapacitate establishments that posed the 

highest risk to public health.7 Thus, decision quality depended on inspectors’ ability to prioritize 

restaurants according to their likelihood of violation, flagging those that posed the greatest risk.  

Second, the department had secondary objectives beyond this primary prediction that were 

clearly stated and measurable: reducing travel distance, targeting more overdue inspections, and 

prioritizing more serious violations and popular restaurants. The department wanted inspectors 

to prioritize their inspections accordingly whenever these secondary objectives could be 

improved without substantially reducing the targeting of restaurants with the highest number of 

violations. This provided clarity in interpreting inspector behavior and how they used their 

discretion: if they did not improve upon these objectives, their behavior could be interpreted as 

using their discretion to diminish the gains from algorithms rather than improve the decision. 

This meant that even if inspectors were prioritizing other potential objectives (e.g. chain status 

 
7 While there are additional possible objectives, such as deterring restaurants from committing violations or ensuring fairness 
in the inspection allocation, our discussions with this department highlighted the primary importance of identifying 
restaurants posing the highest risk to public health.  
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or restaurant size), this could be interpreted as not improving the ultimate decision according to 

the organization’s stated objectives.  

A third advantage was the accessibility of data to potentially improve these predictions, from 

both historical administrative data at the City as well as external data (e.g., from platforms such 

as Yelp, TripAdvisor, and Twitter). The data used in this implementation were similar to those 

used in the work of Glaeser et al. (2016), which found that algorithms could in principle help city 

governments to identify a much larger number of health code violations.  

Fourth, inspectors possessed experience to inform their decisions, and were motivated to 

prioritize higher-risk restaurants. There was no direct monetary incentive based on the number 

of violations found. However, inspectors were instructed to do so, as these factored into 

promotions and had direct implications for their workload. Their inspection outcomes and 

customer complaints about unsanitary conditions were tracked, and any complaints triggered 

immediate inspections as they generally stemmed from restaurants with a high number of 

violations. This meant that inspectors could avoid uncompensated increases in their workload 

by prioritizing inspections with a greater likelihood of violation. It is worth noting that if there 

were large penalties or strong incentives based on the number of violations found, then this 

would limit the extent to which we could explore how decision-makers use their discretion. 

Fifth, improving the targeting of inspections had a direct impact on organizational 

performance. Inspectors were responsible for inspecting all establishments in their ward at least 

twice a year. However, inspectors were time-constrained and only reached 40% as required. 

Thus, better prioritizing inspections could improve the allocation of inspectors’ scarce time.  

Together, these attributes provided a compelling setting to evaluate the returns to 

algorithms. These attributes were also shared by other inspectional departments across the US. 

Interviews of 55 departments (detailed in Section 6) revealed that most departments (67%) also 

ran behind their target number of inspections. 47% of departments also prioritized inspections 
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based on the likelihood of violations alone, while 27% prioritized the recency of inspection over 

likelihood of violation, and 30% prioritized both equally.  

4. Empirical Design  

Between February 1 and March 25, 2016, the City evaluated three methods to predict 

restaurant violations: (1) business-as-usual, (2) a “data-poor” algorithm, and (3) a “data-rich” 

algorithm. While we advised on the empirical design, the City made final design choices and 

executed the implementation.  

The first method (business-as-usual) represented the status quo: relying on inspectors’ own 

predictions to rank restaurants. The Head Inspector asked all inspectors to rank the restaurants 

in their ward in the order that they intended to inspect them, as a natural way to obtain rankings 

as inspectors had a clear mandate to prioritize restaurants with a higher predicted likelihood of 

violation.8 The second method (a “data-poor” algorithm) used the average number of violations 

across historical inspections to rank restaurants in each ward from most to least likely to have 

violations. The third method (a “data-rich” algorithm) ranked restaurants using a random forest 

model trained on both historical violations and Yelp data—including Yelp reviews, ratings, price 

range, hours, services (e.g., reservations), business ambience (e.g., children-friendly), and 

neighborhood (details in Appendix A).9 This method was one of the winning algorithms from a 

crowdsourced tournament across machine learning engineers. Although more sophisticated 

approaches may have yielded higher-quality insights, this algorithm used a comparatively more 

sophisticated model and richer data than the “data-poor” algorithm, emulating common 

practices by firms that invested in upgraded technologies and more complex data.  

 
8 This wording was chosen by the City as the most natural way to obtain inspector rankings, given that inspectors were 
mandated to prioritize restaurants with a higher likelihood of violation. There were also establishments with a required urgent 
priority to inspect, which were treated separately from regular inspections. These included high-risk establishments (e.g., 
hospitals and nursing homes), re-inspections, and restaurants flagged by complaints; these were excluded from the pilot and 
our analysis in order to assess how inspectors themselves prioritized restaurants.  
9 This method was one of the winning algorithms from a crowdsourced tournament across machine learning engineers, and 
provided theoretical efficiency gains of 40% relative to inspectors. Data scientists at the City maintained and ran the algorithm 
to generate rankings for this pilot. Appendix A provides further details.  
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Each inspector received a docket of restaurants to inspect in each period, which listed the 

top-ranked restaurants from each method in randomly sorted order.10 The City determined the 

number of restaurants on each docket based on the number of restaurants that each inspector 

ranked for that period, which typically ranged from 15 to 21. The City’s data team sourced equal 

numbers of the highest rankings from the other two methods, removed any duplicates, and 

randomly sorted all restaurants to create a docket.11 This meant that rather than randomly 

assigning inspectors to different conditions, the experiment randomly sorted restaurants from 

the three methods on every inspector’s docket to provide a mechanism that exogenously 

influenced which restaurants were inspected when, while also allowing us to observe how each 

inspector used their decision authority. These dockets were presented as a “new way of doing 

inspections”. Inspectors were informed when they submitted their rankings that these would be 

supplemented by those prioritized using data processed by the City’s data team, to help identify 

restaurants more likely to have violations. They were thus asked to not hold on to their own lists 

and to work down the docket using their judgment. This was a new approach, as inspectors 

generally did not plan out their work and adjusted which restaurants to visit across the day. 

At the time of the pilot in 2016, this City was one of the early departments to use predictive 

algorithms for this purpose. The City’s data team had successfully hired PhD-trained scientists 

with relevant experience in policy and technology. Based on our discussions with city personnel, 

the team seemed well respected within the City, and viewed as competent. Moreover, this 

change did not threaten inspectors’ main task and expertise in conducting inspections, and was 

rather explained as a way to provide more support. Nonetheless, it is possible that inspectors 

would view any external guidance with skepticism. 

In this design, because inspectors were asked to first rank their own choices, it was easier to 

understand what their counterfactual decisions would have been without algorithms. Moreover, 

 
10 Each inspection period covered approximately 2 weeks, and rankings were processed prior to the inspection periods.  
11 The City made this decision in order to include all restaurants inspectors had prioritized.  
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variation in the degree of algorithmic sophistication could shed light on how features of different 

algorithms may impact outcomes. Lastly, randomly ordering restaurants made it possible to 

identify whether algorithmic methods identified restaurants with more violations.  

4.1 Data and Empirical Approach  

The resulting data we observed was anonymized data on rankings and inspection results. 

However, several important implementation issues led to empirical challenges.   

First, inspectors inspected substantially fewer restaurants than the 1,042 assigned on the 

dockets: only 243 were inspected, averaging 14 per inspector. This was due to a few reasons. One 

was that restaurant inspections were only one component of inspectors’ jobs. They also had 

higher-priority inspections of hospitals, nursing homes, and schools and scheduled at required 

intervals. Inspectors had many of these scheduled during the pilot, which meant that almost half 

of the period was blocked and only the remaining weeks assigned to restaurant inspections. 

Second, two inspectors were sick and unable to undertake inspections for the full period. Lastly, 

the City’s data team listed more restaurants than could be inspected on the docket. They wanted 

to include all inspector-ranked restaurants, and thus sourced an equal number of restaurants 

from the algorithm lists. They also wanted to ensure that inspectors did not run out of 

restaurants in case many were closed and there were no higher-priority inspections scheduled.  

Second, the City modified the docket generation process for the last two periods. Dockets 

were filled with restaurants that had not been inspected from previous dockets, capped at 47, 

which made it possible that each docket no longer sourced an equal number of restaurants from 

each method if there was an imbalance in restaurants inspected across methods in prior weeks.  

Third, rankings from all three methods were not available for all restaurants. Inspectors 

ranked only their highest-ranked restaurants in each period, so those that were listed on the 

dockets because they were ranked highly only by algorithmic methods did not have an inspector 
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ranking. Some restaurants ranked highly by inspectors also lacked rankings from algorithmic 

methods if there were no data from historical inspections or Yelp.12  

To address these issues, we take the following steps. First, we focus our analysis on 

evaluating whether inspected restaurants ranked in the top 20 by algorithms have a higher 

number of violations than those ranked in the top 20 by inspectors. Restricting to this 

subsample ensures a more consistent availability of rankings, and allows us to compare 

inspection outcomes across comparable rankings under each method. Furthermore, since 

inspectors ranked their highest-priority restaurants, comparing the top 20-ranked restaurants 

provides insight into how the top-ranked restaurants under each method differ, and whether 

restaurants ranked highly by algorithms have a higher number of violations.  

This subsample consists of 174 out of all 243 restaurants inspected, which represents a 

subset of 674 restaurants ranked in the top 20 by any method. Across the full set, we found 

substantial overlaps between methods, especially algorithms, with 176 restaurants (26%) ranked 

in the top 20 by at least two methods. 108 (16%) were ranked in the top 20 by the data-rich 

algorithm alone, 97 (14%) by the data-poor algorithm alone, and 293 (43%) by inspectors alone. 

We assess the gains from using algorithms by examining the number of violations found 

across restaurants ranked in the top 20 by algorithmic methods compared to inspectors. We use 

the following model as our main specification for restaurant 𝑖 inspected by inspector 𝑗:  

	𝑇𝑜𝑡𝑎𝑙	𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠! = 	𝛼 + 	𝛽𝐷𝑎𝑡𝑎𝑅𝑖𝑐ℎ	! +	𝛾𝐷𝑎𝑡𝑎𝑃𝑜𝑜𝑟	! +∑ 𝛿#$
# 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑠#,! + 𝛾& + 𝜖! 	      (1) 

Here, 𝛼 represents the mean number of weighted violations for restaurants ranked in the top 20 

by inspectors; 𝛽 and 𝛾 represent the mean expected difference in weighted violations for a 

restaurant ranked by the data-poor and data-rich algorithms relative to a restaurant ranked by 

inspectors, respectively; 𝛿 accounts for overlaps between methods and represents the mean 

 
12 We note that there was only one new restaurant that was new in our sample (i.e., not yet inspected by the time of the 
experiment). This restaurant was not highly ranked by the inspectors, but top-ranked by the data-rich algorithm. We were 
missing a ranking from the data-poor algorithm as the restaurant had no historical inspections.  



 19 

expected difference in weighted violations for a restaurant ranked highly by multiple methods 

(i.e., inspector and each of the algorithms alone, both algorithms, or all methods). We estimate 

this model with and without inspector fixed effects (𝛾&). We then explore the robustness of our 

results across the full sample of inspected restaurants, as well as across alternative subsamples, 

varying the threshold of the top 20. We also account for changes in the docket generation 

process by restricting our sample to the first two periods before the modification occurred.  

5. Results  

Our findings suggest large gains from predicting violations using algorithms: algorithms 

identified restaurants with over 50% more violations on average compared to those prioritized 

by inspectors. The largest gains appear to stem from integrating any data, rather than 

algorithmic sophistication. However, these predictions gains from algorithms did not seem to 

translate into improved decisions. Inspectors were only about two-thirds as likely to follow 

algorithmic recommendations compared to their own lists, dissipating the informational gains 

from algorithms. Furthermore, we find little supportive evidence that inspectors significantly 

improved the decision with respect to other organizational objectives such as reducing travel 

costs, inspecting more overdue restaurants, or targeting more serious violations.  

5.1 The gains in prediction from using algorithms 

[INSERT TABLE 1 and FIGURE 1 HERE] 

Algorithms identified restaurants with more violations than those prioritized by inspectors. 

Table 1 Column 2 shows that restaurants ranked by inspectors alone had 7.2 violations on 

average, equivalent to a Level II and a Level III violation. Our estimates of the gains from 

algorithms over inspectors, 𝛽 and 𝛾, are 4.94 (p=0.001) and 5.17 (p=0.006) respectively, which 

represents a difference of targeting a restaurant with one more Level III violation. Figure 1 plots 

the kernel density estimates, which show that these differences emerge across the distribution.  

We separate out restaurants that were ranked by more than one method. Restaurants ranked 

highly by both algorithms flag 6.8 more violations on average compared to inspectors alone, and 
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restaurants ranked by all three methods flag 6.3 more violations. Restaurants ranked highly by 

inspectors and one of the algorithms do not provide gains relative to inspectors alone.  

In Column 3-4 of Table 1, we explore the difference between the two algorithms, examining 

only the subsample of restaurants ranked by each algorithm alone. The difference between the 

two algorithms (approximately 0.8 with p=0.79 in both specifications) suggests that the gains in 

our setting came from integrating any data into the process, rather than using more data or 

sophisticated algorithms. However, we interpret this with caution as we are underpowered to 

detect larger differences: the confidence interval of the difference between the algorithms ranges 

from -5.8 to 7.5, and we therefore cannot rule out large effects.  

These results are robust across the full sample of inspected restaurants, as well as alternative 

subsamples that vary the threshold of top-ranked restaurants (Appendix Table 1). We also find 

consistent results across subsamples that restrict to the first one or two inspection periods prior 

to the modification in the docket generation process (Appendix Table 2).  

Based on these results, we draw two conclusions. First, both algorithms outperformed 

inspector rankings on violations, and these performance improvements were on the order of 

over 50%. Second, the performance of the data-poor and data-rich algorithms was statistically 

indistinguishable, suggesting that the marginal benefit of additional data may be limited in this 

case. This is consistent with findings in similar applications to problems with representative 

datasets, especially when the scale of the dataset is smaller (Ng (2018))—although this result is 

particularly likely to be context-specific. This result suggests that in some cases algorithmic 

sophistication may not lead to substantially larger gains in prediction, and reinforces that simple 

heuristics can go a long way—but when driven by data, rather than human decision-makers.  

A key consideration in interpreting the gains from algorithms relative to inspectors is what 

the inspector-ranked method represents. Inspectors were asked to rank the restaurants in the 

order they intended to inspect them, raising the possibility that inspector rankings may not 

reflect their predictions of violations. Because this wording was chosen by the City as the most 
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natural way to obtain inspector predictions given the clear mandate to prioritize restaurants 

with higher violations, we make the same assumption in our interpretations above.  

However, if this assumption did not hold, and rather represented which restaurants 

inspectors planned to inspect, the interpretation of these results would change to reflect the 

gains from algorithmic predictions over inspectors’ prioritization – which may have considered 

secondary organizational objectives beyond violations alone. While this would not affect our 

interpretation of the returns to algorithmic sophistication (i.e., the relative gains from the data-

rich and data-poor algorithms), it raises the possibility that predictions gains from algorithms 

compared to inspectors may be smaller than our estimates. We explore this by examining 

whether inspector rankings performed better on secondary objectives relative to algorithms. We 

find that inspectors were more likely to rank more overdue restaurants compared to algorithms 

(Table 2 Panel A), and listed restaurants in closer proximity in order compared to algorithms 

(Figure 2). We do not observe that inspectors were substantially more likely to prioritize popular 

restaurants as proxied by Yelp reviews and ratings. This evidence raises the possibility that 

inspector rankings considered secondary organizational objectives beyond prediction alone, and 

that the estimated prediction gains from algorithms may be smaller than estimated.  

[INSERT TABLE 2 and FIGURE 2 HERE] 

Furthermore, while these results suggest that prior violations play an important role in 

predicting current violations, there may be important reasons why a city might not want to use 

them to guide inspection decisions. For example, if heterogeneity is driven by variation in 

inspector stringency rather than true variation in violations, as found by Macher et al. (2011) 

and Jin and Lee (2018), there may be concerns about relying heavily on past data. Moreover, as 

with any simple algorithm, using historical violations to guide decisions may facilitate strategic 

behavior that might lead to regulatory capture, eventually reducing the efficacy of this approach. 

To implement this in an ongoing basis, a city would need to think about the dynamic nature of 

inspections, which could be quite different from a temporary algorithm used to help with short-
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run prioritization. Lastly, while predicting violations are part of the managerial problem, they 

are clearly not the whole problem. To the extent that inspections are meant to do more than 

rectify existing problems, it may be unwise to prioritize them solely based on such predictions.  

5.2 Decision authority and the returns to algorithms  

Despite the estimated prediction gains from algorithms compared to inspector rankings, 

these gains did not fully translate into improvements in decisions. Inspectors were less likely to 

inspect algorithmically-ranked restaurants compared to those that they themselves had ranked.  

Table 3 shows that inspector-only ranked restaurants accounted for 52% of all inspected 

restaurants, whereas either of the algorithm-only categories each accounted for only 11-13% of 

all inspected restaurants. Mapping these to the numbers of top-20 ranked restaurants by each 

method as detailed in Section 3.1, inspectors were only two-thirds as likely to inspect restaurants 

based on the algorithms relative to their own rankings. They inspected 31% of the 293 

restaurants that they alone ranked in the top 20, but only 18% and 24% of the 108 and 97 

restaurants that the data-rich and data-poor algorithms alone ranked (20% overall across both) . 

[INSERT TABLE 3 HERE] 

We observe some heterogeneity across inspectors. Figure 3 plots the percentage of 

restaurants inspected by each inspector, the red line indicating where this would have ended if 

the inspector had fully followed the dockets.13 While there is substantial heterogeneity across 

inspectors in the extent to which they deviated from the algorithm, this figure shows that most 

(72%) inspected more restaurants that they prioritized compared to those ranked by algorithms. 

This suggests that algorithms may provide limited improvements for managerial decisions in 

some contexts, as managers may use their discretion to dissipate any informational gains. 

[INSERT FIGURE 3 HERE] 

 
13 As shown in Table 3, the absolute share of restaurants inspected that were ranked by inspectors alone does not provide an 
accurate breakdown of the extent to which inspectors prioritized their own restaurants. Because there are restaurants ranked 
by multiple methods, and the number of restaurants inspected vary substantially across inspectors, what identifies whether 
inspectors over-prioritized their own rankings is indicated by whether the dark gray bar exceeds the red line. 
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Robustness in main results  While this highlights an important challenge for 

organizations in capturing gains from algorithms in practice, it also poses a potential threat to 

our results, because we observe inspection results for a subset of restaurants—which raises the 

concern that inspectors may have selected algorithm-ranked restaurants with higher likelihoods 

of violation. The performance differences we observe across methods could then be driven by a 

selection effect of not observing outcomes for restaurants ranked lower by algorithms.  

We explore this concern in two ways. First, we test whether inspectors chose higher-ranked 

restaurants on the algorithm lists, and whether the gains from algorithms stem from the top of 

the rankings. Second, we use inspection records up to spring 2022 to obtain inspection results 

on all restaurants in the sample inspected after the pilot.  

We first test for differences in average ranking by method for inspected restaurants, 

excluding any that were ranked by multiple methods (41 out of 174 restaurants). If inspectors 

cherry-picked higher-ranked restaurants on algorithmic lists, then the average ranking of 

restaurants on algorithmic lists should be smaller than those on the inspector-generated lists.  

[INSERT TABLE 4 and TABLE 5 HERE] 

The point estimates in Table 4 (Column 1) suggest that there is a slight bias in the opposite 

direction, with restaurants ranked by inspectors alone occupying higher ranking positions 

compared to those by the algorithms, although differences are small (𝛽 = 1.07) and statistically 

insignificant (p=0.433). This suggests that the results are unlikely to be driven by observing 

different parts of the ranking distribution for each method. We also find little evidence that the 

gains from algorithms emerge from a particular part of the ranking distribution. In Table 4 

(Column 2), we explore whether the gains from algorithms vary across rank. We find that 

coefficients on interactions with rank are fairly small (0.28 and 0.19 for data-rich and data-poor 

algorithms, respectively) and statistically insignificant (p=0.418 and p=0.562, respectively).  

We further explore this selection issue by obtaining data on restaurant inspections since the 

pilot up to spring 2022, which covers nearly 85% of all restaurants—allowing us to more directly 
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evaluate whether our results are driven by selection. This analysis provides consistent results 

with our findings, with gains of 2.3 to 3.3 more violations flagged by the data-rich algorithm and 

4.3 to 5.4 by the data-poor algorithm, compared to 7.2 to 8.4 violations flagged by inspectors 

alone (Table 5). One issue is that restaurant inspections occurring after the pilot period may 

estimate what the unobserved earlier outcome would have been with some error, due to the 

passage of time. The passage of time is unlikely to differentially affect restaurants ranked by 

methods, so we expect any bias to be on average downward due to measurement error.  

In context of our broader findings, these results suggest that the prediction gains from 

algorithms over inspector rankings are unlikely to be fully explained by selection alone. First, 

while there may be selection in the restaurants that inspectors chose to inspect, they do not 

appear to have chosen substantially more violation-prone restaurants from the algorithm lists 

compared to their own. This suggests that inspectors may not have been making sophisticated 

tradeoffs, and makes it difficult to construct a clear alternative explanation driven by selection. 

Second, the magnitude of the differences we observe between algorithms and inspectors is quite 

large, and does not differ significantly across rankings. Hence it seems unlikely that selection 

would change these results directionally.  

How inspectors use decision authority  We explore whether inspectors used their 

decision authority to improve the decision in other respects. Even if they used their discretion to 

dissipate gains from algorithmic prediction, they may have done so to balance secondary 

organizational objectives as discussed in prior sections. We thus examine each objective in turn: 

reducing travel costs, targeting more overdue inspections, placing more weight on higher level 

violations, and prioritizing more popular restaurants that may pose a larger risk to public safety.   

We do not find supportive evidence that inspectors ultimately substantially improved 

upon these secondary organizational objectives, rather finding that inspectors often overrode 

algorithms to make decisions that worsened these objectives. We compare the distance 

inspectors traveled to the next restaurant with the distance from the closest algorithm-ranked 
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restaurant that they did not inspect. We find the latter to be a subset of the first—suggesting that 

inspectors often had an algorithmically-ranked restaurant in closer proximity (a median 

distance of 0.1 versus 0.6 miles) than the next restaurant they traveled to (Figure 4), as well as 

the closest inspector-ranked restaurant that they did not inspect (Appendix Figure 2).  

[INSERT FIGURE 4 and FIGURE 5HERE] 

We also find little evidence that inspectors placed significantly higher weight on severe 

violations, overdue inspections, or popular restaurants in their inspection decisions. Algorithm-

ranked restaurants had more violations in all three risk levels compared to inspectors, although 

differences are marginally significant (Table 2 Panel B).We also do not find economically or 

statistically significant differences in the days overdue or the number of Yelp reviews and ratings 

between inspected and non-inspected restaurants on average (Table 2 Panel C).14 This helps us 

bound our estimates of prediction gains regarding the concern of what inspector rankings may 

represent (as discussed in Section 5.1): if inspectors were indeed as good as algorithms in 

predicting violations, and the estimated prediction gains were simply arising from their 

consideration of secondary objectives, then we would not expect algorithms to be able to 

improve upon these objectives as these findings suggest.  

Nevertheless, we find some suggestive evidence that inspectors sought to improve upon 

secondary objectives, even if they did not ultimately do so on average. Figure 5 shows evidence 

consistent with the interpretation that inspectors were sensitive to how overdue restaurants 

were. However, the plots also highlight that 23% of the algorithm-ranked restaurants 

overlooked by inspectors (59 out of 254 restaurants) had more than the average 271 days 

elapsed across inspected restaurants, with 90% of these (53 out of 59) having more than the 

average 303 days elapsed across restaurants ranked by inspectors. In comparison, 65% of 

restaurants (59 out of 91) ranked and inspected by inspectors had fewer than 271 days elapsed 

 
14 We note that Yelp ratings and review numbers are an imperfect measure of restaurant popularity, so to the extent that they 
are a poor proxy, it is possible that inspectors improved upon this objective more than we can observe empirically, though on 
average non-inspected restaurants had a slightly higher number of reviews. 



 26 

since the last inspection, with 68% (62 out of 91) at fewer than 303 days.  Given that algorithm-

ranked restaurants were on average closer and flagged more serious violations, these results 

raise the question of why inspectors deviated from algorithmic recommendations in these cases.  

While we cannot fully empirically pin down this mechanism, we find some suggestive 

evidence that inspectors deviated from algorithmic predictions due to their own priors. 

Discussions with the department indicated that inspectors viewed certain restaurant features as 

being correlated with violations, such as chains, seafood restaurants, and older, more lower-end 

businesses—which may have helped them make decisions prior to using algorithms and driven 

how they applied their judgment. We find some suggestive evidence consistent with this 

interpretation. Table 2 Panel A shows that inspectors were more likely to prioritize older 

businesses in their rankings relative to algorithms, as well as chains and seafood restaurants to a 

lesser extent. Inspectors also placed higher priority on businesses with lower prices and 

reservations or table service offerings, although some of these differences are small, making it 

difficult to draw any clear conclusions.  

Other potential explanations appear less likely to explain the results, and are broadly 

consistent with the interpretation that inspectors partly used their discretion to dissipate gains 

from using algorithms. For example, one potential alternative explanation is algorithm aversion, 

which has been found to play a role in some settings (e.g., Dietvorst et al., 2015). However, in 

this case, the department chose to not explicitly communicate that these recommendations were 

driven by algorithms to reduce the likelihood of triggering algorithm aversion. Rather, the 

implementation only communicated that they supplemented inspectors’ lists with restaurants 

prioritized using data. This meant that the use of algorithms in this setting only added 

restaurants to inspect on their dockets. This implementation approach, however, raises another 

potential concern that inspectors may have perceived the city’s data team as not competent to 

provide reliable information, leading them to not follow the dockets. While we cannot fully rule 

out this explanation, we do not observe supportive evidence. Our understanding is that the 
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City’s data team was highly regarded both within and outside the department at the time, and if 

inspectors perceived the data team to be incompetent, we would expect that they would have 

been more likely to stick to their original lists. However, none of the inspectors stuck to their 

original rankings in whole or even loosely in order, suggesting that this may be less likely.  

Another possibility is that inspectors may have deviated from algorithmic recommendations 

due to regulatory capture, reducing inspections of owners with whom they had social 

relationships. However, this appears unlikely, as inspectors were assigned to a different ward 

every two years and often did not meet the target of inspecting restaurants twice a year—

providing them with little opportunity to build relationships.  

It is also possible that inspectors were prioritizing other potential objectives than those 

defined by the organization, such as prioritizing personal preferences or objectives. For 

example, it is possible that inspectors believed that deviating from their own rankings would be 

perceived as a lack of competence, or that it would lead the organization to maintain this 

change, which they were against. It is also possible that while the docket was presented as a 

guide to apply their judgment, it was perceived as too ambitious a goal to complete, 

demotivating them as a result. While we cannot fully rule out these alternatives, they appear to 

be less consistent with the contextual details and the evidence we observe, as dockets were 

presented as a guide rather than a goal, and none of the inspectors held on to their lists. These 

potential explanations are also broadly consistent with our interpretation that inspectors did not 

use their discretion to improve the decision according to the department’s stated objectives.  

Together, our analysis suggests that an important consideration for organizations in using 

algorithms as decision aids may be managing decision authority. In principle, it may not be clear 

how decision-makers can apply their judgment to enhance the decision, and simple rules-of-

thumb that supported decision-making in the past may become an impediment when using 

discretion. This is consistent with evidence found by Hoffman et al. (2018), as well as broader 

evidence on the challenges of managing professional workforces with specialized knowledge and 
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strong norms who resist advice (e.g. Logg et al., 2019; Kellogg, 2014; Greenwood et al., 2019). 

Our findings are also consistent with lab evidence that given statistical forecasts, participants 

may not always sufficiently update their beliefs, and this behavior can persist even after 

participants are informed that their predictions are far less accurate than the forecasts (Lim & 

O’Connor, 1995; Goodwin & Fildes, 1999; Avan et al., 2019). As theorized by Athey et al. (2020), 

how to allocate decision authority to decision-makers may depend on various factors relating to 

the organizational context, and the value of discretion may be highly dynamic if decision-makers 

become more likely to rely on algorithms as they observe their performance.  

6. SURVEY EVIDENCE FROM INSPECTIONAL DEPARTMENTS ACROSS THE U.S.  

Our findings suggest a clear managerial implication: organizations should be careful not to 

over-invest in algorithmic sophistication, and decision authority may deserve a deeper 

consideration in addition to technical investment. However, this evidence stems from a single 

context, which raises questions on how generalizable these findings may be and the extent to 

which this may be an important issue for organizations more broadly. While inspectional 

departments are part of many organizations across both government agencies and companies, 

our findings may be limited to the particularities of the department that ran the pilot.  

To explore the extent to which these findings might generalize, we contacted 176 

inspectional departments covering the largest 200 metropolitan areas15 in the U.S. to conduct 

interviews on how they approach restaurant inspections and their thoughts on algorithmic 

sophistication and inspector discretion. We reached 55 departments that cover 45 counties (392 

cities, towns, and other territories)16 for interviews that lasted up to one hour on (1) how they 

prioritize their inspections (2) whether they have used data to prioritize inspections and details 

on how or why not; and (3) how important they considered inspector discretion to be and why 

 
15 Departments vary in whether they cover a city, county, or parts of counties.  
16 Some departments were organized at the county level that covers more than one city. We conducted interviews with any 
department that we reached who were willing to be interviewed. Only one department that we reached refused to be 
interviewed.  
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or why not (Appendix B). These interviews were conducted between August 2021 and February 

2022, allowing us to document insights from more departments that had attempted using data 

and algorithms to guide their inspections relative to 2016 when we ran the pilot.  

These interviews provided two key insights. First, although simple data can provide large 

returns, many departments did not use it because they believed they would need more data or 

technical capability. Second, most departments saw retaining managerial decision authority as 

crucial, suggesting that our findings may have wider practical implications beyond our pilot.  

Nine of the 55 departments reported using some algorithmic rule or software to guide 

inspections, with three having run pilots using rich external data, and one having run multiple 

pilots leveraging machine learning algorithms using data from Google and Twitter. However, 

many departments that had attempted using more sophisticated solutions reported eventually 

having abandoned those approaches for a simpler model. 

A key barrier mentioned by those who had not used data to guide their decisions was the 

lack of data and technical capability. Although historical inspections data were available for all 

departments, most believed that they would need far more data as well as technical talent to be 

able to improve their decisions—echoing similar survey responses from C-level executives who 

list data availability as their greatest challenge for using AI (CognitiveScale, 2021). However, 

most departments (67%) severely ran behind their inspection targets, suggesting that they may 

have benefitted from using historical data to improve targeting like our pilot city.  

We also found that most departments placed high value on allocating full decision authority 

to inspectors. All departments that we interviewed gave inspectors ultimate discretion in 

prioritizing inspections, with 69% of departments rating inspector discretion as being very 

important (4 or 5 on a scale of 1-5). Departments that had used algorithms to guide inspections 

had also all provided inspectors with ultimate decision authority. The reasoning behind this 

generally fell into the two categories we explored in our pilot. The most common reasoning was 

that inspectors possessed deep knowledge of businesses that would enable them to better 
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predict violations, as we explored in the first part of our empirical analysis. One manager 

explained, “Inspectors have the most information about the food establishments that they are 

going to inspect. They know which ones tend to do well on inspections and which ones tend to 

do poorly.” Another corroborated that inspectors had “training and experience” that provided 

them with “first-hand knowledge of businesses, and especially the frequent violators”. Another 

manager elaborated on this with an example:  

“There are things that inspectors as humans can ascertain better than an algorithm….like for 
instance restaurants near a baseball stadium may need more inspections closer to baseball 
season because that is when they’re more busy and they’re more likely to fall behind on 
ensuring that they’re following health procedures. This is the kind of information that a 
software might not take into account but that human judgment can.” 

The second most common reason was that inspectors had organizational knowledge on 

multiple objectives and how to balance them. Most frequently mentioned was travel costs based 

on geographic distance, as we explored in the second part of our analysis. One department 

explained: “It’s important that [inspectors] are not driving across the county to do 

inspections.” Another emphasized, “It doesn’t make sense to just go to high-violating 

restaurants. Inspectors should pick high-violating restaurants in one area.” One department 

mentioned another objective that we examined in our analysis, the severity of the violation:  

“A mom-and-pop restaurant that serves hamburgers probably serves 4-500 hamburgers a 
day compared to a fast food restaurant like McDonald’s that serves 1,000 hamburgers in a 
day. So those temperature issues are not nearly as much of an issue in the big chain because 
[food] is not going to be sitting out there for more than 15-20 minutes at a time. Whereas at a 
mom-and-pop it may be there all day…so temperature issues and [how serious the violation is] 
becomes much more important [at the mom-and-pop]. There’s your discretion.” 
 

Yet despite the value that most departments placed on providing inspectors with decision 

authority, those that attempted using data and algorithms to guide their decisions faced similar 

issues with discretion as our pilot city. One department elaborated that “only about a third of 

their inspectors actually utilized the software [regularly]”. Another highlighted that “inspectors 

do not really access [the data] that often.” In fact, a department that had used machine learning 

algorithms in collaboration with tech companies reported that 39% of 36 inspectors never used 
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the algorithmic recommendations. This variation in usage persisted across inspector tenure, 

although inspectors at either ends of tenure were less likely to use algorithmic 

recommendations, consistent with findings in Allen and Choudhury (2021). 4 of 7 inspectors 

(57%) with 0 to 3 years of experience working in the department reported using algorithmic 

recommendations; 6 of 8 (75%) among those with 3-6 years; 6 of 7 (86%) among those with 6-9 

years; 1 of 1 (100%) among those with 9-12 years; and 5 of 10 (50%) among those with over 12 

years. Among those who used them, only 4 (17%) used them on a weekly basis, most using them 

on monthly, quarterly, or when their assignments changed. When surveyed by the department, 

44% of the inspectors reported feeling neutral about the usefulness of the algorithms, and 6% 

not useful. This low usage limited the gains from algorithmic recommendations, which the 

department also reported as identifying more violations compared to inspectors as in our pilot 

(e.g. an algorithm leveraging data from Twitter was 64% more effective compared to inspectors).  

Together, these interviews provide insights consistent with our empirical findings, and 

highlight that while organizations commonly place high value in algorithmic sophistication 

relative to managing decision authority, the latter may merit a more serious consideration from 

organizations seeking to use algorithms as decision aids.  

7. DISCUSSION AND CONCLUSION 

In a world where organizations are increasingly investing in technologies to support 

decision-making, our findings speak to the potential as well as the challenges involved in 

implementing such approaches at scale. Our results indicate a clear role for algorithms in 

improving decisions, but also highlight the importance of managing decision authority for 

organizations to capture their value. In this case, even a simple algorithm based on internal 

historical data better prioritized restaurants relative to human prediction. Nevertheless, these 

prediction gains did not translate into better decisions, as inspectors chose to prioritize 

restaurants based on their own predictions, without ultimately improving the decision on other 

organizational objectives. While the City continued to explore the use of targeting for a few years 
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following this pilot, they ultimately discontinued the program and returned to their old system, 

which did not use any data to prioritize inspections. While comparing the relative gains from 

algorithmic sophistication and improving decision authority is beyond the scope of this study, 

our findings suggest that decision authority may merit a more serious consideration for many 

organizations, especially relative to their interest in algorithmic sophistication.  

Our analysis has a number of limitations. First, our analysis takes the primary goal of the 

department as given, i.e., to prioritize based on the number of violations. In practice, there may 

be other goals that departments pursue. For example, if inspections deter future violations, then 

a department may want to change its approach to prioritization over time. Second, our analysis 

assumes that inspections accurately capture actual violations. To the extent that violations are 

inaccurate or biased, then predictions based on them would also be biased. Third, we examined 

one specific data set in one particular context. Other datasets or algorithms may be more 

productive than these approaches, and organizations need to carefully consider the quality of 

their data, and the noise and bias present. This decision context is characterized by moderate 

complexity, with higher costs for mistakes that make some degree of human supervision 

valuable, and our findings may be most generalizable to similar contexts. In settings with 

greater complexity and richer data, the benefits of algorithmic inputs to decision-making may be 

higher than those found here. Similarly, the compliance patterns we observe may not generalize 

to other settings with different communication and organizational dynamics.  

Our results highlight the importance of carefully considering how decision authority is 

allocated and managed. However, the solution is rarely as simple as removing decision authority 

from human decision-makers. In many managerial contexts, removing humans from the 

decision process may involve substantial risks, and some degree of human supervision may 

remain necessary for edge cases. Furthermore, discretion may be important for other reasons 

beyond decision quality. For example, two departments we interviewed highlighted that 
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discretion may be important to maintain the well-being of inspectors, by providing flexibility to 

reduce “burnout” and improve job satisfaction. 

More work remains to be done to further understand when and how organizations can 

effectively capture value from algorithms without removing managerial discretion. In addition 

to understanding how organizations can train decision-makers to better apply their private 

knowledge to improve decisions when using data, exploring how the decision process can be 

redesigned (e.g., Puranam, 2021) may provide a promising direction for future work. While 

organizations commonly default to providing decision-makers with algorithmic 

recommendations, other possibilities such as incorporating human preferences into algorithms 

may provide better options for decision-making in some contexts.  
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TABLE 1: The Informational Gains from Algorithms  
 
 Comparing All Methods  Comparing Algorithms  
 (1) (2)  (3) (4) 

Outcome: Total 
Violations 

Total 
Violations 

 Total 
Violations 

Total 
Violations 

      
Data-rich 
Algorithm Only 3.96** 4.94***  0.86 0.79 

 (1.65) (1.48)  (3.23) (2.99) 
Data-poor 
Algorithm Only 4.91** 5.17***    

 (1.96) (1.87)    
Both Algorithms 6.75*** 6.81***   1.22 
 (1.67) (1.64)   (3.05) 
Inspector + 
Data-rich 
Algorithm Only 

0.19 0.18 
 

  

 (1.59) (2.49)    
Inspector + 
Data-poor 
Algorithm Only 

-0.45 -0.71 
 

  

 (1.46) (1.49)    
All Methods 6.54*** 6.29**    
 (2.26) (2.92)    
Constant 7.31*** 7.19***  11.40*** 11.83*** 
 (0.60) (0.59)  (2.12) (2.10) 
Inspector FE No Yes  Yes Yes 
R-squared 0.16 0.33  0.3 0.3 
Observations 174 174  42 59 
Including 
Ranking Up To:  20 20  20 20 
Only restaurants ranked within the top 20 by any condition are included. Columns (1) and (2) compare all three 
methods across the full sample. Columns (3) and (4) restrict the sample to restaurants in the top 20 ranked by the 
algorithms, not the inspectors, to compare the difference between the two algorithmic approaches. Total violations is 
a weighted sum of one, two, and three star violations. Data-rich Algorithm Only and Data-poor Algorithm Only are 
binary variables indicating restaurants that were ranked in the top 20 by the data-rich algorithm or the data-poor 
algorithm only, respectively. Both Algorithms indicates restaurants ranked in the top 20 by both data-rich and data-
poor algorithms, but not the inspectors. All Methods indicates restaurants ranked in the top 20 by all three methods. 
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TABLE 2: Characteristics of Ranked and Inspected Restaurants 

Panel A: Restaurants Ranked in Top 20 by Each Method 

 

(1) Data-
Rich 

Algorithm 
Only 

(2) Data-
Poor 

Algorithm 
Only 

(3) Inspector 
Only 

p-value 
(1)=(3) 

p-value 
(2)=(3) 

Chain 0 0.03 0.05 <0.001 0.28 
Yelp Rating 3.14 2.6 2.97 0.33 0.17 
Review Count 119.9 144.41 154.28 0.19 0.74 
Seafood 0 0.05 0.06 0.004 0.66 
Restaurant Age 1.69 3.18 7.27 0.003 0.05 
Price Range 1.4 1.14 1.27 0.17 0.40 
Accepts Reservations 0.27 0.22 0.21 0.20 0.84 
Table Service 0.46 0.38 0.32 0.03 0.34 
Days Since Last Inspection 190.52 246.57 302.58 <0.001 0.09 
N 108 97 293   

PANEL B: Inspected Restaurants Ranked in Top 20 by Method 
Level I Violation 5.58 6.17 4.2 0.10 0.10 
Level II Violation 0.63 0.48 0.29 0.11 0.13 
Level III Violation 1.47 1.7 0.85 0.21 0.02 
N 19 23 91   

PANEL C: Inspected vs. Non-Inspected Restaurants in Top 20  
 Inspected Not Inspected p-value 
Chain 0.02 0.03 0.28 
Yelp Rating 2.82 2.95 0.45 
Review Count 123.04 138.05 0.55 
Seafood 0.03 0.05 0.22 
Restaurant Age 4.92 5.27 0.84 
Price Range 1.14 1.33 0.04 
Accepts Reservations 0.18 0.26 0.04 
Table Service 0.34 0.41 0.05 
Days Since Last Inspection 270.97 247.68 0.59 
N 174 500  
Panel A compares the attributes of restaurants ranked in the top 20 by each method, excluding any restaurants ranked 
by multiple methods. Columns (1)-(3) show means and (4)-(5) display p-values of the difference between those 
columns. Panel B compares the number of violations by severity across inspected restaurants from each of the lists. 
Panel C compares the attributes of inspected and non-inspected restaurants among all top-20 ranked restaurants. 
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TABLE 3: Inspector Compliance 
 

 (1) (2) (3)  
Number of 

Restaurants 
Inspected 

% % of Restaurants Inspected Out of 
All Top-20 Ranked Restaurants 

Data-rich Algorithm Only 19 10.92 17.59 
Data-poor Algorithm Only 23 13.22 23.71 
Inspector Only 91 52.3 31.06 
Inspector+Data-poor 
Algorithm 

7 4.02 29.17 

Inspector+Data-rich 
Algorithm 

4 2.3 23.53 

Both Algorithms 17 9.77 15.6 
All Methods 13 7.47 50 
Total 174 100  

This table shows the breakdown of inspected restaurants by ranking method. Column (1) and (2) respectively show the 
number of restaurants that were inspected in each category and the corresponding percentages. Column (3) shows the 
percentage of restaurants inspected out of all top-20 ranked restaurants in that category.    
 
 
TABLE 4: Differences in Rankings and Performance across the Ranking Distribution 
 

 (1) (2) 
Outcome: Rank Total Violations 
   
Data-rich Algorithm Only 1.07 0.76 
 (1.36) (4.29) 
Data-poor Algorithm Only 1.50 2.65 
 (1.26) (4.56) 
Data-Rich Algorithm x Rank  0.28 
  (0.35) 
Data-Poor Algorithm x Rank  0.19 
  (0.33) 
Rank  -0.02 
  (0.11) 
Constant 10.24 7.49 
 (0.57) (1.26) 
R-squared 0.01 0.1 
Observations 133 133 

 
These regressions are run across the subsample of restaurants ranked in the top 20 by one of the methods alone, 
excluding any restaurants ranked by multiple methods. Column (1) analyzes differences in rankings across inspected 
restaurants, where Rank indicates the ranking position using the method that ranked the restaurant in the top 20. 
Column (2) analyzes whether the performance of algorithmic methods differs depending on the ranking position, where 
Total violations is a weighted sum of one, two, and three star violations.  
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TABLE 5: Robustness in Gains from Algorithms Across Inspections Data up to 2022 
 (1) (2) (3) (4) (5) (6) 

Outcome: Total 
Violations 

Total 
Violations 

Total 
Violations 

Total 
Violations 

Total 
Violations 

Total 
Violations 

Data-rich 
Algorithm Only 3.32*** 2.61*** 2.46*** 2.31** 2.33*** 2.40*** 

 (0.77) (0.87) (0.82) (0.80) (0.80) (0.78) 

Data-poor 
Algorithm Only 5.43*** 4.70*** 4.49*** 4.28*** 4.30*** 4.34*** 

 (0.71) (0.68) (0.73) (0.69) (0.68) (0.65) 

Both Algorithms 4.85*** 4.17*** 3.97*** 3.83*** 3.88*** 3.95*** 

 (1.01) (1.05) (1.09) (1.01) (1.00) (0.96) 
Inspector + 
Data-rich 
Algorithm Only 

0.46 -0.09 -0.41 -0.61 -0.60 -0.55 

 (1.64) (1.66) (1.45) (1.52) (1.55) (1.56) 
Inspector + 
Data-poor 
Algorithm Only 

3.09* 2.55 2.33 2.24 2.30 2.42 

 (1.77) (1.74) (1.71) (1.62) (1.61) (1.62) 
All Methods 4.82** 4.34** 4.14** 4.14** 4.21** 4.28*** 
 (1.68) (1.58) (1.62) (1.49) (1.47) (1.46) 

Constant 7.21*** 7.90*** 8.18*** 8.38*** 8.35*** 8.27*** 

 (0.37) (0.33) (0.29) (0.24) (0.24) (0.22) 
Observations 586 688 762 817 843 875 

R-squared 0.29 0.24 0.22 0.2 0.19 0.2 

Inspector Fixed 
Effect Yes Yes Yes Yes Yes Yes 

Including 
Ranking Up To:  20 25 30 35 40 All 

Each column shows the robustness of results across different sample restrictions in the full sample of available 
inspections data up to Spring 2022. Column (1) restricts the sample to restaurants ranked within the top 20 by any 
method, column (2) within the top 25, column (3) within the top 30, column (4) within the top 35, column (5) within 
the top 40, and column (6) across all inspected restaurants. Total violations is a weighted sum of level I, II, and III 
violations. 
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FIGURE 1: The Number of Violations Across Restaurants Prioritized by Each Method

 
This figure shows kernel density plots of weighted violations found at restaurants ranked by inspectors alone 
compared to each of the algorithms alone.   
 

FIGURE 2: Distance Between Ranked Restaurants in Order by Method  

 
This figure shows kernel density plots of the distance between restaurants if travelled to in order based on inspector 
and algorithm rankings.  
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FIGURE 3: Percentage Inspected by Method across Inspectors 

 

 
This figure plots the percentage of inspected and top-20 ranked restaurants by method for each inspector. Each bar 
represents a single inspector, where the left axis indicates the inspector, and the right axis shows the number of 
restaurants that the inspector inspected. The red line indicates the percentage of inspector-only ranked restaurants in 
the full sample of top 20-ranked restaurants, which is where the Inspector-Only bar (in dark grey) should have ended 
if inspectors had fully complied.  
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FIGURE 4: The Distance Inspectors Travelled vs. the Closest Algorithm-ranked Restaurant  
              Not Inspected 

  
 

This figure plots the distribution of the distance inspectors travelled to their next restaurant, compared with the 
distance to the closest algorithm-ranked restaurant on the docket that was not inspected. 
 
 
FIGURE 5: Days Overdue by Method and Inspection Status 

 
This figure plots the distribution of how overdue an inspection was across inspected and non-inspected restaurants by 
whether they were highly ranked by inspectors compared to algorithms alone.  
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APPENDIX A: Details on the “Data-rich” Algorithm 
 

The “data-rich” algorithm was sourced from an open contest run across machine 
learning engineers, which awarded financial prizes for algorithms that most effectively used Yelp 
data to predict restaurant health violations. Designers of the winning algorithms received a 
minimum of USD $1,000, provided by Yelp, and over 700 people signed up for the tournament. 

Participants were given access to a dataset recording more than 30,000 historical 
inspections data from the City (spanning approximately 9 years), and a linked data set of all 
available Yelp reviews, ratings, and business attributes for restaurants over the same time 
period. They were given three months to work on developing algorithms. Algorithm submissions 
were evaluated for their effectiveness in predicting inspection outcomes out-of-sample, based on 
restaurant inspections conducted over a period of two months after the close of submissions. 
Specifically, algorithm performance was measured by root mean squared logarithmic error 
(RMSLE).  

The algorithm chosen by the City was one of the winning solutions, which used Python to 
implement a random forest model across the full data set. Features used were constructed from:  

- All historical inspections data for each restaurant, which included the number of 
violations found across inspections, the type of violations found, notes from the 
inspection, the order of inspections (i.e. whether it was the first inspection for the 
restaurant or subsequent ones), the number of days since the prior inspection, the 
number of businesses within a 1.2km distance of the business and the number of 
inspections across neighbors, and the day of the most recent inspection 

- All Yelp data, which included the text of every review available for the restaurant, the 
average star rating, the most recent star ratings, the date, total and average review 
length, counts of health-related terms in the review text (e.g. “unclean”, “health”), 
attributes of the user who provided each review, and all available business attributes 
on Yelp for that restaurant (e.g. business category, business neighborhood, business 
ambience, business location, noise level, price range, whether it provides delivery 
services)  

 
The random forest model was implemented using RandomForestRegressor in scikit-

learn, and predicted the number of violations, log transformed. The parameters of the model 
were as follows: n_estimators = 1001, max_features, 600, n_jobs=8, oob_score=True. This 
model was adapted by data scientists at the City and re-run prior to the pilot. 
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APPENDIX B  Key questions for interviews with departments 

 
Hello, I am a researcher conducting research on how health departments prioritize and target 
food establishments for inspection. I would love to speak to the relevant person in your 
department. Could you transfer me? 
 
Everything is anonymous, and no individual city responses will be presented.  
 
1. How does your city currently target and prioritize inspections? What is your department’s 
primary goal with carrying out inspections? 
 
2. How often do you currently inspect restaurants, and are you able to meet that that goal?  
 
3. When there are more restaurants to inspect relative to capacity, what formal guidance or rules 
do you have to determine how to prioritize them?  
 
4. Have you thought about using data to target or prioritize inspections? 

(a) If no, why not? 
(b) If yes, ask for details on the implementation (e.g. the kind of data and algorithms 

involved, how it was implemented across inspectors, whether inspectors had decision 
authority, how successful it was, whether they are still using this) 
 

5. On a scale of 1-5, 5 being very important, how important do you think inspector discretion is 
when deciding what business to inspect on a given day?  

• If important or very important: why is it important for inspectors to have discretion? 
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APPENDIX FIGURE 1: Distribution of Violations 

 
This figure shows the distribution of weighted violations across inspections from January 2007 through June 2015.  
 
 
 
APPENDIX FIGURE 2: Distance to the Closest Algorithm-Ranked Restaurant Not Inspected 
vs. the Closest Inspector-Ranked Restaurant Not Inspected 
 

 
This figure compares the distance to the closest inspector-ranked restaurant not inspected to the closest algorithm-
ranked restaurant not inspected on inspector dockets. 
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APPENDIX TABLE 1: Robustness across sample restrictions  
 (1) (2) (3) (4) (5) 

Outcome: Total 
Violations 

Total 
Violations 

Total 
Violations 

Total 
Violations 

Total 
Violations 

      
Data-rich 
Algorithm Only 4.11 5.05** 3.92* 4.17* 3.72* 

 (2.76) (2.07) (2.15) (2.04) (2.06) 
Data-poor 
Algorithm Only 4.66 4.54** 4.31** 4.41** 4.13** 

 (2.71) (1.89) (1.75) (1.78) (1.72) 
Multiple 
Methods 5.62** 4.92** 3.94** 4.13** 3.69** 

 (2.47) (1.74) (1.65) (1.48) (1.50) 
Constant 7.12*** 7.07*** 8.01*** 7.89*** 8.23*** 
 (1.00) (0.61) (0.54) (0.45) (0.41) 
Observations 101 138 201 222 243 
Inspector Fixed 
Effect Yes Yes Yes Yes Yes 

Including 
Ranking Up To:  10 15 25 30 All 

 
Each column shows the robustness of results across different sample restrictions. Column (1) restricts the sample to 
restaurants ranked within the top 10 by any method, column (2) within the top 15, column (3) within the top 25, column 
(4) within the top 30, and column (5) across all inspected restaurants. Total violations is a weighted sum of level I, II, 
and III violations. 
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APPENDIX TABLE 2: Robustness across time periods 
 (1) (2) 
Outcome: Total Violations Total Violations 
   
Data-rich Algorithm Only 2.83 4.11 
 (1.81) (2.11) 
Data-poor Algorithm Only 4.88 4.78 
 (2.05) (2.07) 
Multiple Methods 6.66 5.30 
 (1.92) (1.87) 
Constant 7.17 7.50 
 (0.61) (0.63) 
Observations 113 130 
Inspector Fixed Effect Yes Yes 
Including Periods Up To:  1 2 
Only restaurants ranked within the top 20 by any method are included. Total violations are a weighted sum of level I, 
II, and III violations. 
 

APPENDIX TABLE 3: Overlaps across methods by inspector  

Inspector 
# 

Data-Rich 
Algorithm 
Only(%) 

Data-
Poor 

Algorithm 
Only(%) 

Inspector 
Only(%) 

Inspector 
+ Data-
Poor(%) 

Inspector 
+Data-
Rich(%) 

Both 
Algs 
(%) 

All 
Methods 

(%) 

 
 

Total 
(N) 

1 25.81 6.45 61.29 0 3.23 3.23 0 31 
2 8.33 8.33 83.33 0 0 0 0 24 
3 13.16 31.58 44.74 2.63 5.26 2.63 0 38 
4 0 9.09 77.27 4.55 9.09 0 0 22 
5 28.57 0 67.86 3.57 0 0 0 28 
6 7.14 11.9 40.48 0 4.76 33.33 2.38 42 
7 17.95 10.26 30.77 7.69 0 20.51 12.82 39 
8 11.76 20.59 55.88 0 0 8.82 2.94 34 
9 18.42 10.53 23.68 13.16 5.26 18.42 10.53 38 
10 17.02 14.89 40.43 2.13 0 25.53 0 47 
11 10.81 8.11 29.73 8.11 5.41 27.03 10.81 37 
12 15 15 35 0 0 20 15 40 
13 21.28 17.02 34.04 6.38 2.13 19.15 0 47 
14 25 22.92 35.42 4.17 2.08 10.42 0 48 
15 11.63 11.63 41.86 0 0 30.23 4.65 43 
16 3.7 11.11 62.96 3.7 7.41 11.11 0 27 
17 20 17.78 40 2.22 2.22 17.78 0 45 
18 20.45 18.18 31.82 4.55 2.27 15.91 6.82 44 

This table shows the breakdown of restaurants ranked in the top-20 across methods by inspector. 
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APPENDIX TABLE 4: Descriptive Statistics  
 

 Variable Obs Mean Std. Dev. Min Max 
(1) Number of Historical 
Inspections 

1041 13.83 5.19 1 27 

(2) Mean Historical Inspections 1041 8.40 3.75 0 25 
(3) Days since Last Inspection 1041 280.36 366.50 3 4979 
(4) Chain 1042 0.03 0.16 0 1 
(5) Yelp Rating 671 2.93 1.39 0 5 
(6) Review Count 671 144.97 228.73 0 1832 
(7) Price Range 671 1.29 0.86 0 4 
(8) Restaurant Age 671 5.01 14.40 0 140 
(9) Table Service 671 0.40 0.49 0 1 
(10) Seafood 671 0.05 0.22 0 1 
(11) Highest Rank By Any Method 1042 17.48 12.40 1 61 
(12) Inspection status 1042 0.23 0.42 0 1 
(13) Numbers of Level-1 Violation 243 5.19 3.91 0 21 
(14) Numbers of Level-2 Violation 243 0.40 0.70 0 5 
(15) Numbers of Level-3 Violation 243 1.18 1.35 0 8 
(16) Total Number of Violations 243 9.53 6.99 0 38 
 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 
(1)  1.00                
(2)  0.07 1.00               
(3)  -0.37 -0.06 1.00              
(4)  0.03 -0.13 -0.03 1.00             
(5)  -0.04 -0.10 -0.08 -0.13 1.00            
(6)  0.13 0.00 -0.09 -0.11 0.31 1.00           
(7)  0.00 -0.01 -0.08 -0.11 0.59 0.52 1.00          
(8)  0.12 -0.03 -0.01 -0.02 0.14 0.27 0.19 1.00         
(9) 0.04 0.07 -0.12 -0.17 0.38 0.49 0.63 0.11 1.00        
(10)  -0.03 -0.03 0.04 -0.05 0.06 0.07 0.07 0.08 0.10 1.00       
(11)  -0.15 -0.19 0.12 0.02 0.06 0.05 0.03 -0.02 0.01 0.02 1.00      
(12)  0.08 -0.07 -0.03 -0.02 -0.01 -0.02 -0.06 0.00 -0.06 -0.01 -0.11 1.00     
(13)  0.13 0.46 -0.08 -0.10 0.05 0.01 -0.03 0.09 0.10 -0.04 -0.11  1.00    
(14)  0.13 0.30 0.03 -0.08 -0.01 0.25 0.03 -0.01 0.18 0.04 -0.08  0.32 1.00   
(15)  0.01 0.19 -0.02 -0.04 0.08 0.07 0.02 -0.04 0.15 -0.09 0.08  0.30 0.22 1.00  
(16)  0.10 0.43 -0.05 -0.10 0.08 0.09 0.00 0.03 0.18 -0.07 -0.03  0.79 0.51 0.79 1.00 

 
 


