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Abstract

Recent technological advancements have increasingly enabled data-driven decision-
making across firms. While prior literature highlights the value of using more data in
decision-making, there has been less insight on the impact of information speed. We
examine how information speed influences organizational decision-making, leveraging
data from a healthcare context. We analyze the effects of a technology that increased
the speed of information by delivering real-time notifications of test results across
64,152 decisions made by 387 physicians. We find that faster information not only
expedites decisions but also enhances their quality, resulting in improved organizational
performance. These improvements stem from enabling decision-makers to acquire and
learn from information more effectively. Thus, our findings indicate that investing in
information speed can provide significant advantages from faster and better decisions.
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1 Introduction

Recent technological advancements have enabled new opportunities to collect and leverage

data across the organization, providing firms with more data to inform their decisions than

ever before. This has led to changes in how managers and firms make decisions, leading them

to rely more on data rather than intuition (Brynjolfsson and McElheran, 2016, 2019; Adner

et al., 2019). Much recent work has highlighted the value of information for decision-making,

showing that the availability and use of data improves firm decisions (Agrawal et al., 2019;

Camuffo et al., 2020; Koning et al., 2022), and plays a role in driving performance differences

across small and large firms alike (Nagaraj, 2022; Kim, 2023; Agarwal et al., 2023; Galdon-

Sanchez et al., 2024).

While much focus has been placed on the amount of information and its value, another key

implication of recent technological changes is the change in the speed of information: firms

increasingly have access to real-time data to inform their decisions, and this increased speed

may change how they make decisions, in addition to any additional information provided by

the data.

However, there has been less insight into how this increased speed of information affects

decisions in organizations. While we might expect that it should lead to faster decisions,

how it affects the quality of decisions is more ambiguous. On the one hand, it may have

little effect on the quality of decisions, leading to the same decisions simply made faster.

On the other hand, it might change the decisions themselves by altering what information

decision-makers decide to acquire and how they learn from that information. They may

decide to obtain more or less information or become more or less targeted in the information
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they choose to acquire. Decision-makers may also learn differently from the same set of

information if they consider it in real-time while actively working through their hypotheses,

which may affect what they notice or the patterns they see.

In this paper, we propose that increasing the speed of information affects how quickly

decisions are made and their quality, and provide empirical evidence from a healthcare

context. We find that increasing the speed of information not only increases the speed

of decisions but also enhances indicators of organizational performance, suggesting that

it improves decisions overall. This appears to be driven by two key mechanisms. First,

increasing the speed of information changes the information that decision-makers choose

to acquire, leading them to collect more targeted information more efficiently. Second, it

enables decision-makers to learn better from the information they gather. Our findings thus

suggest that the speed of data may generate advantages from both faster and better firm

decisions. This has implications for research on experimentation, suggesting that investing

in information speed may help decision-makers improve their theories and develop better

experiments (Camuffo et al., 2023; Agrawal et al., 2024; Camuffo et al., 2020). It also provides

insights on how organizations may build competitive advantage based on speed advantages

(Eisenhardt, 1989; Baum and Wally, 2003; Hawk et al., 2013), highlighting a new mechanism

through which this can be built – via investments in the speed of information – and how it can

improve decisions. More broadly, these findings highlight the importance of understanding

not only what decisions are made but how they are made within organizations, especially in

the age of data.

We examine the impact of an intervention that increased the speed of information by de-

livering real-time notifications on test results across 64,152 decisions made by 387 physicians
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serving 43,607 unique patients on non-critical cases in an Emergency Department (ED) of a

major hospital.1 This provided us with uniquely rich and detailed administrative data on a

large number of decisions across a large number of decision-makers, and allowed us to observe

the entire process of information acquisition (i.e., the tests they order), how they make their

decisions based on this information (i.e., the length of time taken), and the performance

outcomes of this decision for the organization (e.g., the costs incurred to deliver services, the

quality of care, and patient satisfaction). The technology was installed in only one of the

two adult wards in the hospital at a moment in time when no other changes were introduced

in the organization, permitting the use of a difference-in-differences strategy (Chan, 2016).

We leverage a triple-differences strategy that additionally controls for potential seasonal

effects to estimate the effect of this technology, which increased the speed of information

provided to physicians. Before its implementation, a physician in our sample ordering a

laboratory test for a patient was not automatically notified of test results when they became

available. Instead, the physician had to navigate several screens in the internal software

system to check manually whether the result was ready. This process required entering

the physician’s password and could not be delegated to a nurse. This friction meant that

physicians did not check frequently to save time, a uniquely scarce resource in this setting,

and thus experienced long lags in receiving information on the tests they ordered. In June

2022, a technology was installed in one ward, which visually notified physicians when test

results were ready, thereby increasing the speed of information provided for the decisions

1Importantly, all critical cases arriving by ambulance requiring immediate physician attention (i.e., those
with high mortality risk) were dispatched to a separate ward in this hospital. In such cases, the relationship
between speed and organizational performance may be more directly linked and in part mechanical. We do
not study this ward in this paper.
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they made.2

As predicted, we find that the technology intervention increased the speed of decisions.

Its introduction was associated with a significant decrease (13% in our most conservative

estimate; approximately 103 minutes) in the length of stay of the average patient, which

we interpret as indicating an increase in the speed of decisions. A leads and lags exercise

indicates that the average length of stay evolved broadly similarly across the two wards in the

months before June 2022, and then discontinuously decreased in the treated ward coinciding

with the introduction of the technology.

We also find that this had broader effects on organizational outcomes, suggesting that

decisions improved. We observe a decrease in the total costs incurred per patient episode,

estimated at around 25% (about 365 US dollars, almost 1.5x the local monthly minimum

wage in 2022). Despite faster and more efficient decisions, we find that the introduction of

the technology also reduced patient hospitalization, without increasing the likelihood that

the patient returned to the ED within 30 days. To the extent that these variables proxy

for the health outcome of the patient, we conclude that the technology pareto-improved

the quality of care for patients – suggesting that physicians made better decisions. Using

responses from a random sample of patients to a survey conducted by the hospital, we also

find an improvement in patient satisfaction.

We find that these effects appear to be driven by two key mechanisms. First, the tech-

nology changed the information that physicians chose to acquire, leading them to focus on

2For each ordered laboratory test, it showed the processing status, notifying physicians of whether the result
was ready and whether the result was within pre-established ranges. These notifications were viewable
by all physicians and nurses in the ward, but did not indicate specific test results, physician names, or
patient names – only the patients’ national ID numbers. Importantly, no notifications were physically sent
to any physician device, and physicians still needed to log into the internal system to check the exact result
manually.
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more targeted information (i.e., more specialized tests), ultimately reducing the number of

test results ordered. This accounted for about half of the gains observed in both the speed

of decisions and the costs incurred. Second, increasing the speed of information appears to

have improved how physicians learned from the information they acquired, enabling them

to receive information at the time of decision to make better inferences. This was especially

the case for uncommon decisions where they had to actively think through what information

to acquire

Contribution to the literature We contribute to two strands of literature. First is the

growing body of research on data-driven decision-making, showing the value of information

for strategic decisions (Brynjolfsson and McElheran, 2019; Camuffo et al., 2020; Koning

et al., 2022; Nagaraj, 2022; Kim, 2023; Kim et al., 2024). Our findings suggest that in

addition to the amount of data, the speed of information is an important determinant of

how decision-makers learn to improve strategic decisions. Our study also highlights two

key mechanisms that determine how decision-makers learn to improve strategic decisions:

first, their choice of what information to acquire, and second, their ability to learn from the

information acquired.

Second, our paper contributes to research on speed or time as a source of competitive

advantage. Much work has emphasized the importance of speed for organizational perfor-

mance and competitive advantage (Stalk, 1988; Eisenhardt, 1989; Stalk Jr and Hout, 1990;

Forbes, 2005; Hawk et al., 2013; Teece et al., 1997; Helfat et al., 2009), through a first-mover

advantage (Makadok, 1998), a series of temporary advantages (Garud et al., 1998), or im-

proved learning via more interactions with the environment (Eisenhardt, 1989; Mosakowski,
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1997). This literature has generally conceptualized speed as an advantage in competition, for

example by enabling firms to more rapidly respond to customer demand and realize revenues

from investments relative to competitors (Stalk, 1988; Hawk et al., 2013; Pacheco-de Almeida

et al., 2015).3 Much of this literature has also been theoretical, qualitative, or correlational

– providing valuable insights but making it difficult to disentangle the impact of speed from

other related changes such as flexibility (e.g., just-in-time production) or better management

practices. In this paper, we highlight a decision-based advantage from speed and identify a

novel lever through which organizations can increase decision speed – improving the speed of

information. We also provide evidence that suggests that the speed of information causally

enables better strategic decisions and organizational performance, beyond decision speed

alone.

2 Theoretical framework

In this section, we first examine the role of information in firm decisions and performance.

Next, we contend that in addition to the quantity of information, the speed of information

plays a key role in firm decisions. Finally, we present our hypotheses on how the speed of

information affects the speed and quality of decisions in organizations.

2.1 The role of information in firm decisions and performance

Information – on competitors, customers, suppliers, and internal operations – is a crucial

input to firm decisions. From the literature on evidence-based management (Pfeffer and Sut-

3A key exception is Eisenhardt (1989), which focuses on how speed affects decisions.
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ton, 2006; Barends and Rousseau, 2018) to more recent work on data-driven decision-making

(Brynjolfsson and McElheran, 2019), growing research has shown that using information and

data-driven processes is a key driver of firm decisions and performance differences across firms

in entrepreneurial (Camuffo et al., 2020; Koning et al., 2022), innovation (Nagaraj, 2022),

and competitive strategy contexts (Kim, 2023). Complex decisions in organizations require

decision-making under uncertainty, which data can help inform (Agrawal et al., 2019; Kim

et al., 2024).

Moreover, research on experimentation has highlighted that taking actions to acquire

information is a core driver of how organizations learn to make better decisions (Ries, 2011;

Eisenmann et al., 2012; Blank, 2013; Kerr et al., 2014; Gans et al., 2019; Camuffo et al., 2020;

Leatherbee and Katila, 2020; Koning et al., 2022). While much of this work has focused on

the entrepreneurial context, recent approaches in strategic decision-making have highlighted

parallels outside entrepreneurship. Applying a real options approach to strategy empha-

sizes how initial investments allow firms to collect signals about possible options (Adner and

Levinthal, 2004). A “Mendelian” view of how executives operate highlights the role of inten-

tionality in generating options, testing them through “experiments”, and making a choice

(Levinthal, 2017). Across this literature, including in entrepreneurial strategy, experiments

generally refer not to formal experimentation, but more broadly to actions designed to yield

the gathering of information to inform a choice. For example, this may entail interviewing

customers or releasing a prototype, as well as launching an A/B test.

However, much of this research has focused on the value of acquiring more information

(Kim, 2023; Koning et al., 2022), rather than on how decision-makers choose to acquire in-

formation. Research on evidence-based and data-driven decision-making has largely focused

7



on the availability of data and its use (e.g., Brynjolfsson and McElheran (2016)), providing

evidence that more information can be valuable. However, it has yielded less insight on

key decisions that organizations make on how to acquire information, such as the timing

of information acquisition or the validity of the method chosen. Similarly, research on ex-

perimentation has generally focused on whether information is acquired as a binary action

and emphasized the importance of complements such as specifying theories (Camuffo et al.,

2020; Agarwal et al., 2023), leaving the design of the actual “experimentation” process of

information acquisition as a black box.

2.2 Speed of information as an organizational lever

In particular, one key dimension that has been overlooked is the speed of information ac-

quisition. This is somewhat surprising, given that the excitement around “big data” in

management highlights three defining attributes – the “volume” of data available, the “ve-

locity” of data creation, and the “variety” of data types that organizations can use (McAfee

et al., 2012). Yet while there has been much research on how the volume and variety of data

(e.g., unstructured digital exhaust from sensors, social media, and clickstreams) impact firm

decisions, the implications of information speed have been less studied.

While these attributes can often come as a bundle, increased speed of information is

distinct from the availability of data or the costs to acquire it, which have been studied

extensively both theoretically and empirically (e.g., see Bloom et al. (2014) and Goldfarb

and Tucker (2019) for reviews). For example, net neutrality does not affect the amount

of information being transmitted, but impacts the speed at which the same information is

8



delivered, ensuring that one company cannot pay to send the same amount of data to the

same customer at a faster speed. Similarly, internet-enabled applications like WhatsApp or

Skype lower the cost of transmitting information relative to telephones, but largely without

changing the speed of information.

Moreover, organizations often invest in the speed of information acquisition. The impor-

tance of real-time data has been highlighted by managers across industries for its potential to

improve high-stakes decisions. For high-frequency trading, banks invest in cable innovations

and server proximity to the exchange for faster data transmission and trade execution by

milliseconds to outrun competition (Osipovich, 2020). Similarly, companies across industries

invest in data processing architecture to avoid being saddled with old infrastructure, which

can introduce delays in providing information on data-generating events (Guagenti, 2019).

In addition, many recent business innovations rely on information speed at their foundation.

Online platforms that rely on matching such as ride-hailing or delivery would not be able to

function without real-time data, and part of the early value of large language models (LLMs)

such as GPT-3, Claude, and LLaMA stemmed from their ability to provide information from

the internet more quickly, speeding up the process of information acquisition. These invest-

ments are not intended to change the amount or variety of information for decision-making,

but to increase its speed.

2.3 The impact of information speed on decisions

The primary reason proposed for why organizations invest in information speed is that this

can lead to speed-based advantages. Naturally, having information in real-time or close to
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it has been seen to enable agility in decisions relative to competitors, providing insights on

the market before others make a move (McAfee et al., 2012). For example, hedge funds and

investment banks use satellite data to count cars in retailers’ car parks ahead of corporate

earnings releases, detect oil storage tanks across the world to gauge movements in oil prices

before they happen, or identify events like hurricanes or wildfires before reports (Hawser,

2022). Similarly, many businesses highlight how real-time customer data enable them to

respond more quickly to customers and identify changes in demand (Garduno, 2022).

This insight is echoed in the literature on speed advantages, which suggests that exec-

utives who attend to real-time information can react and decide more rapidly (Eisenhardt,

1989). Research on speed-based advantages suggests that reaching the same decision faster

can alone provide competitive advantages by enabling faster competitive moves: firms can

exploit opportunities and capture customers before their competitors (Hawk et al., 2013;

Pacheco-de Almeida et al., 2015; Stalk, 1988), strengthen commitment from their stake-

holders (Langley, 1995; Pfeffer and Sutton, 2000), and learn more quickly by making more

decisions (Eisenhardt, 1989). While much of this literature has been theoretical, correla-

tional, or qualitative in nature, often based on a few case studies that have yielded at times

contradictory results (e.g., Perlow et al. (2002)) and hampered causal inference, it raises the

possibility that faster information acquisition may lead to decision speed, which can provide

performance advantages relative to competitors.

This leads us to our first hypothesis, which suggests that one way to gain a speed advan-

tage is by investing in information speed.

Hypothesis 1: Increasing the speed of information acquisition leads to a faster decision,

reducing the length of time to reach a decision.
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In many cases, this relationship may be relatively straightforward: receiving information

faster can allow a decision-maker to reach a decision more quickly by being able to consider

the information sooner.

However, what is much less straightforward is how the increased speed of information

might affect the quality of decisions – even without the advantages of decision speed relative

to competition. While much research on speed advantages implicitly assumes that receiving

information more quickly will lead to the same decisions being made, simply faster, we argue

that increased speed may in fact change and improve decisions.

First, we hypothesize that with timely information, decision-makers can identify more

relevant and targeted information, which may allow them to ultimately require less infor-

mation overall. Timely information may enable decision-makers to be more adaptive in

their information acquisition approach: they can make sequential decisions to learn from

the early information they acquire to inform whether and which additional information they

need, rather than seeking as much information as possible at once in anticipation of a long

delay. Research on sequential and Bayesian experiments suggests that adaptive information

acquisition strategies can alter the course of experiments by improving their relevance and

ensuring that efforts are concentrated on the most promising lines of inquiry (e.g., Berry

(2004); Mao and Bojinov (2021); Bojinov and Gupta (2022)). For example, physicians may

order several potentially relevant patient tests at the outset in anticipation of a delay, but if

none of those bear out, they may require many more additional tests to determine promising

paths to diagnosis. In contrast, if results arrived quickly, they might be able to order fewer

tests and learn from early test results to determine which additional tests might be most

informative to make a diagnosis. This set of information acquisition choices would be more
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efficient and effective, enabling them to order fewer tests that are more targeted to make the

diagnosis. Similar patterns may apply in other contexts, such as in product development.

For example, online contexts can generally enable faster information speed in collecting cus-

tomer feedback compared to offline contexts, which has led many technology companies with

online products to launch smaller early experiments that can provide targeted data to inform

subsequent decisions on whether to build a new product feature.4

Second, information speed may improve how decision-makers learn from the information.

Research in cognitive science suggests that the timing of stimuli affects what decision-makers

notice and attend to at a time, due to cognitive constraints that restrict our span of memory

and ability to process information (Miller, 1956; Lachman et al., 2015). This also relates to

the concept of bounded rationality, that a decision-maker does not have enough cognitive

bandwidth to consider all relevant information – which has been seen as a key binding con-

straint to strategic decision-making in the management literature (Simon, 1991). Similarly,

having more considerations on one’s mind has been shown to decrease cognitive ability, as

tasks compete for limited mental resources (Mani et al., 2013). These findings suggest that

increasing the speed of information could enable decision-makers to receive information at a

more optimal time when they are holding all details of the decision in their memory without

interruption in their attention. Instead of receiving information at a later time when other

decisions have entered one’s mind and contextual details or possible hypotheses forgotten,

timely information may provide decision-makers with insights at the point of consideration,

enabling them to make better inferences and ultimately better decisions.

4It is worth noting that there are many other differences between offline and online contexts, including the
lower cost of acquiring information, which also may increase the total amount of information acquisition as
well as its efficiency (Koning et al., 2022).

12



For example, in the context of physicians who perform complex and high-stakes decisions

requiring cognitive capacity, one primary source of cognitive load is the number of patients,

especially when they exhibit a wide variation in health conditions to be diagnosed, as is

often the case in an Emergency Department (Shanmugam, 2020). When information arrives

slowly and the hospital is busy, a physician may have to switch to tending to another patient

2 while waiting for test results on patient 1 to arrive, which would require switching back to

patient 1 when the results arrive. The physician may be less able to make inferences from

patient 1’s test results because she has had to switch back to this patient, making it more

difficult to hold all relevant details in her memory and process the information correctly. In

contrast, if patient results were delivered faster, she would not have to switch to patient 2

– instead receiving patient 1’s test results as she actively considers the patient’s symptoms.

This may allow her to notice that symptom X does not fit the pattern of diagnosis A, or

remember that the patient had Y symptoms which allows her to form the hypothesis that

it may be another category B of diagnoses entirely. As a result, she would not erroneously

order tests for diagnosis A, but instead make the correct inference that she must consider

diagnoses in category B.

This leads us to our second and third hypotheses:

Hypothesis 2: Increased speed in information results in improved decisions as measured

by organizational outcomes.

Hypothesis 3: This improvement in decisions stems from how decision-makers acquire

and learn from information.

(a) More effective information acquisition: Information speed leads decision-

makers to collect less information that is more targeted.
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(b) Better learning from information: Information speed leads to better learning

from information by receiving it at the time of decision.

In the healthcare context, Hypothesis 3(a) indicates that increasing information speed

should result in changes in the information that physicians choose to acquire, leading them

to acquire fewer laboratory tests that are more targeted and specific. It also implies that

decision improvements should stem from patient cases that require information acquisition

(i.e., ordering tests). Hypothesis 3(b) suggests that information speed should lead to de-

cision improvements, especially during busy times when physicians may experience higher

cognitive load due to potential switches to another patient case, which can hinder processing

and learning from information. It also implies that improvements in decisions should be es-

pecially likely for uncommon cases involving rare conditions that may require more cognitive

capacity to learn from the information and think through potential hypotheses.

The alternative null hypothesis to Hypothesis 2 is what is implicitly assumed by much

of the current literature: that decisions remain the same and are simply made faster. The

alternative hypotheses to Hypothesis 3(a) are that increasing the speed of information

either has no effect on information acquisition choices or leads decision-makers to collect

more information that is less relevant for their decisions. The alternative hypotheses to

Hypothesis 3(b) are that information speed either hurts or has no effect on decision quality

during busy times or for uncommon cases imposing higher cognitive load.

In the following sections, we evaluate whether increasing the speed of information not

only leads to faster but also better decisions that improve organizational performance. After

establishing this relationship, we explore the possible mechanisms of why faster information

might lead to improved decisions and performance. Specifically, we investigate whether and
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how the speed of information affects the information decision-makers choose to acquire and

how they learn from that information.

3 Empirical setting

We leverage evidence from a healthcare context to explore how information speed affects

decisions and organizational performance. We first discuss the empirical requirements of

exploring this question and how we address them, and then describe in detail the empirical

context and the technology intervention that increased the speed of information.

3.1 Empirical requirements

Empirically exploring how information speed affects strategic decisions and organizational

performance imposes many requirements. First, it requires observing a large number of

complex or high-stakes decisions made by a large number of key decision-makers, rather

than those that are operationally automated using pre-defined rules such as manufacturing

production systems or marketing outreach. Studying such decisions enables us to understand

how providing real-time information affects how decision-makers acquire and learn from

information and the resulting choices that they make. Moreover, given that a key feature of

strategic decision-making is decision-making under uncertainty, a large sample of decisions is

required to evaluate whether in expectation decisions improve performance, since observing

the outcome of a single decision is not indicative of its quality. Similarly, observing a large

number of decision-makers on a similar set of decisions is important to explore whether any

effect might be particular to a single decision-maker or differential across decision-makers.
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Second, we need to observe the full process of decision-making, including what infor-

mation decision-makers choose to acquire and how they make their decisions based on this

information – including their time to decision and the performance outcomes of decisions for

the organization. This is often not easy, as in many organizations high-stakes decisions are

not fully documented or measured in timing, and it can be difficult to observe the nature and

attributes of the information decision-makers choose to acquire, which is generally sensitive,

ad-hoc, and idiosyncratic.

Third, we require a substantial and plausibly exogenous change in the speed of informa-

tion acquisition. This requirement is crucial to tease apart information speed from other

changes like better management practices or the amount of information, to determine the

causal impact of increasing information speed.

To address these challenges, we leverage a unique opportunity to analyze detailed data

from inside a real organization in the healthcare industry, which provides several advantages.

First, this data provides us with rich insights on decisions at scale. During our sample

period (March-October for 2019 and 2022), 387 physicians in the Emergency Department

received and made over 64,152 decisions across 43,607 unique patients. For each physician,

we observe the full process of information acquisition. We observe baseline conditions for

each decision: the physician’s experience as well as when and which patients were allocated

to her, including their initial health conditions at the time of the arrival (triage, vital signs).

We observe the choices each physician made on information acquisition: how many and

which laboratory tests were ordered by the physician, and when these tests were ordered.

Unlike many hospitals that outsource to third-party labs, this hospital conducts diagnostic

lab work in its own state-of-the-art lab. Common tests include complete blood counts (CBC)
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for detecting infections and anaemia; chemistry profiles for assessing enzymes, electrolytes,

and sugar levels, useful for diagnosing heart attacks, diabetes, dehydration, and kidney

problems; and urine tests for detecting kidney issues, including stones.

We also observe how quickly the decision was made, approximated by the patient’s length

of stay in each case. Finally, we observe key organizational outcomes of decisions made: the

total cost incurred, proxies of the quality of treatment (e.g., hospitalization and whether the

patient returned to the Emergency Department within 30 days), and patient satisfaction.5

Finally, our partner organization introduced a technology during our sample period that

provided immediate notifications of laboratory test results to physicians. This technology

was implemented in only one of its two ER wards at the time, providing substantial and

exogenous variation to the extent that this technology effectively increased the speed of

information acquisition.

3.2 Empirical context

The Emergency department Our study takes place in the Emergency Department of

the Fundación Valle del Lili (henceforth FVL) Hospital. The FVL hospital is a general

teaching hospital located in Cali, Colombia, ranked 162nd in the world in the 2024 edition of

The World’s Best Hospitals (Newsweek, 2024). In 2021, the hospital included 680 beds and

20 operating rooms and had 724 physicians. With these resources, the hospital processed

around half a million outpatient visits and 36,000 hospital discharges.

The FVL Emergency Department operates similarly to those in other hospitals around

5The cost variable encompasses all resources utilized and billed to the third-party payer from the patient’s
admission to the emergency room (ER) until discharge from the hospital. This includes drug expenses,
laboratory tests, consumables, and physician honoraria.
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the world, with the important proviso that the ward to which patients are directed depends

on their insurance status. Upon arrival, potential patients are received by administrative

staff, who check for insurance eligibility to be admitted, and then by a nurse. An important

caveat is that all patients – independent of insurance – who arrive by ambulance after a

car accident, a heart attack, or a similarly critical condition with high mortality risk, skip

this step and are sent directly to the resuscitation room. Once they are stable, they are

sent to the Intensive Care Unit. Similarly, any patients with no triage level – because their

condition does not require seeing a physician – are also dismissed. The remaining patients

with conditions that require physicians but are less urgent or high-risk are then triaged and

assigned to one of two Emergency Department wards depending on their triage level and

insurance status, as follows. Patients with standard national insurance coverage and triage

levels 1-3 are sent to the ‘regular’ ward. Patients with additional private insurance coverage

and triage levels 1-5 are sent to the ‘private insurance’ ward.6

Upon arrival to each ward, patients wait in front of the consulting rooms and join a

virtual queue, in which the queue order depends on both arrival time and triage level.

The patient at the front of the queue is then matched with the next ‘initial consultation’

physician that becomes available (there may be several such physicians working in parallel).

In the consulting room, this physician gathers additional information, potentially orders

laboratory tests, and performs an initial diagnosis.7 The patient is then sent to a bed

for observation and is put under the care of a different physician. This attending physician

6The triage system in an Emergency Department (ED) prioritizes patients based on the severity of their
condition, ensuring that those needing immediate medical attention receive it first. Triage level x-1 requires
more urgent and quick attention than triage level x.

7Although physicians may order other tests, such as X-rays, our study focuses solely on laboratory tests
because the screen only affected the speed of obtaining laboratory test results.
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reviews the information, periodically observes the evolution of the patient, potentially orders

more laboratory tests, and incorporates the information from the test results when these

become available and are communicated to her. At regular intervals, the attending physician

decides between: (a) keeping the patient in the ward for longer, (b) discharging him, and

(c) admitting him to the non-emergency wing of the hospital (hospitalization).

Increasing the speed of information acquisition Before the installation of the technol-

ogy, attending physicians had to manually log into the internal software system and navigate

a number of screens to check whether a laboratory test result had become available. Searches

were individual, in that a physician inquiring about the result of a specific patient was not

alerted if the result of a different patient had become available. This process could not be

delegated to a nurse, as it required entering the physician’s password. The system imposed

unnecessary burdens on physicians to check multiple times and resulted in substantial delays

in information acquisition.

In 2022, FVL decided to alleviate this bottleneck by providing physicians with immediate

notifications on the status of each laboratory test. In partnership with a provider of software

services, and in consultation with the authors of this study, this technology was implemented

only in the private insurance ward, but not in the regular ward. The status of test results

could be visually consulted at all times by any nearby staff member but was hidden from

patients and relatives. For each laboratory test ordered for each patient, the technology

displayed the type of test (e.g. glucose, hemoglobin, etc.) and its availability.8 Learning

8Cells were empty if the corresponding test type was not part of the order set, and filled with a circle if it
was. Circles were white if test results were not yet available; blue if they were in the process of validation;
green if results were available and were within pre-established standard intervals; yellow (i.e. concerning)
or red (i.e. critical) if results were available and outside these intervals.
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the actual numerical values of the test results required logging into the system with the

physician’s password.9 Importantly, there were no active notifications that were sent to any

physician: test result availability was only displayed visually to inform physicians that they

could log in and view the results.

This technology was installed in the third week of June 2022. Over the last two weeks

of June, physicians were informed and trained about its use. For this reason, we take July

2022 as the first month in which the technology was active and used by physicians.

4 Empirical strategy and data

In this section, we outline our empirical strategy and discuss the rationale behind the use

of a triple-differences specification. We also explicitly outline our method for testing the

parallel trends assumption and provide the main descriptive statistics of our data. Finally,

we present arguments supporting the validity of our research design.

Differences-in-differences Our empirical strategy leverages a differences-in-differences

(DiD) specification. Cases assigned to the private insurance ward, where the technology

was implemented from June 2022 onwards, represent the treatment group. Cases assigned

to the regular ward, where the technology was never set up, represent the control group.

Specifically, a baseline difference-in-differences model would estimate:

yi = β(Privatew(i) × Postt(i)) + αd(i) + θin(i) + πt(i) + γ′Xi + ϵi (1)

9Throughout our sample period, the technicians in the laboratory would typically phone the ED immediately
if the test results were in the critical range. This custom did not change after June 2022.
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where yi is an outcome (such as length of stay) of case i, in(i) indexes the ward to which

patient i is assigned, d(i) indexes the physician allocated to patient i, and t(i) indexes the

exact hour (i.e. date and hour of day combination) in which patient i arrived. The model

controls for physician αd(i), insurance company θw(i) and hour πt(i) fixed effects, as well

as patients’ pre-determined characteristics Xi (patient age and gender, triage level, main

diagnosis and patient vital signs on arrival to the ED).10 The parameter β captures the

average differential outcome for cases assigned to the private insurance ward following the

introduction of the technology.

Triple-differences strategy In the context of Emergency Departments, the exploitation

of organizational changes to one hospital ward while using a different ward as a control group

in a DiD strategy was pioneered by Chan (2016).11 The identification assumption in this

type of strategy is not that the expected outcomes across the two wards would have been

similar in the absence of the treatment, an assumption that would clearly be violated in

our setting. Instead, identification requires that the average outcomes across the two wards

would have evolved similarly in the absence of the introduction of the technology.

A challenge in our setting is that, according to our discussions with FVL administra-

tors and physicians, the introduction of the technology potentially coincided with seasonal

changes in the composition of cases. Specifically, it may be that healthier patients (even after

controlling for patient characteristics) may reach the private insurance ward in the summer

months, relative to the winter months and to the regular ward.12 To alleviate this concern,

10Instead of controlling for the ward to which the patient is assigned, we control more finely for the detailed
insurance company of the patient as the insurance company fully determines the ward.

11We follow Chan (2016) in clustering the standard errors at the physician level.
12Alternatively, the number and composition of the medical staff present in the two wards may differ across
the seasons, in a way that is not controlled by the physician fixed effects included in the regression. We
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our main estimating strategy is a triple-differences model comparing the months after June

in the private insurance ward in 2022, relative to the regular ward and to 2019.13 Specifically,

we pool the 2019 and 2022 March-October months together in the sample and use as the

main independent variable of interest the triple interaction between (Privatew(i) ×Postt(i))

and a year 2022 dummy. The model becomes:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θin(i) + πt(i) + γ′(Xi × 2022t(i)) + ϵi (2)

In this triple-differences model, all the control variables (i.e., Xi) are interacted with the year

2022 dummy to capture different evolution in the baseline characteristics of the patients.14

The main tables below report the results when the continuous (Length of Stay and

Costs) and count measures (number of laboratory tests) are log-transformed. We do so to

minimize the impact that outliers can have on our results. All our results are consistent and

qualitatively similar if instead of using the log-transformation, we use the Inverse Hyperbolic

Sine (IHS) transformation.

Event study analysis The standard test of the identification assumption in the differences

framework is the evaluation of potentially differential pre-trends. We evaluate these pre-

have no anecdotal evidence that this is indeed the case, but it might be a potential concern.
13We chose the year 2019 as it is the last pre-COVID year. In 2020 and 2021 multiple changes to the
internal organization of the ED (including the temporary elimination of the private insurance ward) make
comparisons difficult. If instead, we choose 2018 instead of 2019, we obtain very similar estimates.

14A potential threat to the identification of our results is that the characteristics of the patients or physicians
changed differentially across wards. Figure A.1 shows the coefficient estimates of our triple-difference model
on different observable characteristics of the patients and physicians. The Figure shows that most of these
interaction terms are not statistically different from 0, which provides evidence of the validity of our
research design. Two variables show some negative and significant effects, gender (male) and age of the
patient. This indicates that there is an increase in the fraction of younger men in the pool of patients
in the private ward after the introduction of the technology. To deal with any potential changes in the
composition of the pool of patients, we control explicitly for these variables below, so that all the results
we present are robust to the potential change in the characteristics of the pool of patients.
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trends using the following leads and lags model:

yi =
1...K

∑
j=−K...−1

βj(Privatew(i)×Monthjt(i)×2022t(i))+αd(i)+θin(i)+πt(i)+γ′(Xi×2022t(i))+ϵi (3)

where β̂−K , ..., β̂−1 capture the estimated effects of being assigned to the private insurance

ward in the K months leading to the introduction of the technology, and β̂1, ..., β̂K capture

the corresponding effects for the K months following the introduction in June 2022.15

Descriptive statistics Our main analysis sample comprises eight months centered around

the introduction of the technology in June 2022, and their equivalent in 2019. The 64,152

cases in our sample include 43,607 distinct patients cared for by 387 distinct physicians.

Table 1 displays summary statistics for the main variables in the study.

—— Insert Table 1 Here ——

5 Information speed and time to decision

In this section, we display the results of testing Hypothesis 1, which predicts that increasing

the speed of information leads to a faster decision. We approximate the length of time to

reach a decision with the patient’s length of stay, an important measure of organizational

performance for hospitals more generally (Chan, 2016, 2018; Chan and Chen, 2022). We

also provide empirical evidence demonstrating that our research design seems to be valid,

robust, and correctly identified.

15Note that our empirical specification is not affected by recent criticisms about DiD designs (de Chaisemartin
and D’Haultfeuille, 2017; Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021). First, treatment is not
‘fuzzy’ as defined in de Chaisemartin and D’Haultfeuille (2017) because no case is treated in the control
group. Second, the treatment affects all the (treated) cases simultaneously and the private insurance ward
remains treated for the remainder of the sample period. This rules out the concerns related to staggered
treatment designs (Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021).

23



Baseline results Table 2 displays the baseline results from running our triple-differences

strategy according to equation 2. We start in Column 1 with a simplified model, which only

controls for a post dummy and a private insurance ward dummy (both interacted with the

year 2022 dummy). In Columns 2 and 3 we then sequentially introduce insurance status

and hour-fixed effects, as well as (initial consultation) physician-fixed effects. From column

4 onwards, we add patient controls. Column 4 additionally winsorizes the top and bottom

1% of the length of stay distribution. While log-transforming this dependent variable should

have alleviated the strong skewness of the length of stay distribution, winsorizing the top

part of the distribution contributes to reassuring us that the baseline estimates are not

disproportionately due to extreme positive values. We find that the introduction of patient

controls and winsorizing the distribution has a strong effect on the estimate, decreasing it in

absolute value from −.35 to −.16. In column 5, we drop Triage 4 and 5 cases from the sample

without winsorizing the distribution. Because these cases are only present in the private

insurance ward, dropping them from the sample increases the homogeneity of the average

case across the two wards, but substantially decreases our sample size. Finally, column 6

adds back the Triage 4 and 5 cases without winsorizing the distribution, and the treatment

estimate remains broadly similar to column 5, and is more conservative than winsorization in

column 4. Given this, we take this model as our baseline estimate.16 The reduction of 13%

represents a decrease of about 100 minutes with respect to the mean (the average episode

lasts about 13 hours).

—— Insert Table 2 Here ——

To understand better the magnitude of the estimates and provide further validation to our

16We obtain similar results if we winsorize the distribution of the length of stay in this column.
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triple-differences model, Table A.1 displays the baseline results from estimating Equation (1).

We find consistent results. The DiD model centered around July 2022 suggesting in Column

1 that the introduction of the technology is associated with a 25% decrease in the average

length of stay. In Column 2, we repeat the estimation of (1) but in the ‘placebo’ year of

2019, in which no technology was introduced at any point. We find that the post-June period

was associated with a decrease in length of stay of around 11%. While the decrease in the

post-June months is much smaller in 2019 relative to 2022, it is still statistically significant.

This suggests that there might be seasonal effects in the differential composition of patients

arriving to the private insurance and regular wards. This confirms that a triple-differences

model is more likely to be appropriate in our setting.

Leads and lags analysis We display in Figure 1 the estimates of (3). We do not find a

significant differential effect of being assigned to the private insurance ward in the months

leading to the introduction of the technology. In the first full two-month period after this

introduction, a discontinuous decrease in length of stay of around 35% is apparent in the

figure. Overall, we interpret the evidence in Figure 1 as largely supportive of the main

identification strategy in the paper.

Furthermore, Rambachan and Roth (2023) provides insight on how to conduct robust

inference in designs that use difference-in-differences designs even if the assumption of parallel

trends’ assumption may be violated. The idea is that we can estimate how large the post-

treatment violations of the parallel trends have to be to make the design invalid. Figure A.3

conducts this robust inference and shows that the violation of the parallel trends assumption

has to be very large (larger than it could be, given Figure 1) for our suggested effects to be
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invalid. Given the evidence of Figure 1 and A.3, we think that our design is valid as there

is sufficient evidence to argue that the two emergency department wards were behaving

similarly before the intervention but not after.

—— Insert Figure 1 Here ——

In summary, these findings provide evidence in support of Hypothesis 1, showing that

increasing the speed of information acquisition leads to faster decisions. This effect may

alone in some cases provide advantages for organizations, enabling them to make decisions

before their competition, and suggests that one key lever through which organizations can

realize speed advantages is through investing in the speed of information acquisition.

In the next section, we provide empirical evidence for our other two hypotheses.

6 Information speed and organizational outcomes

In this section, we display the results of testing Hypothesis 2 on the effect of the speed

of information on different organizational outcomes (costs, quality of care, and patients’

satisfaction). We also provide additional empirical evidence on the assumptions necessary

to validate the robustness of our identification strategy.

Main results In Table 3, we examine the impact of increasing information speed on indi-

cators of organizational performance. Column 1 of Panel A examines an outcome variable

that indicates the total costs associated with diagnosing a specific case. We find that this

total cost variable decreased by around 25% following the introduction of the technology.

Given that the average cost is about 1.4K US dollars, this represents a decrease of about

365 US dollars, approximately 1.5 times the local monthly minimum wage in 2022. These
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results are robust to winsorizing the cost variable. For instance, when we winsorize at 95%

or 90%, the coefficient is still negative and significant at 1%, estimated at 24% and 22%,

respectively.

—— Insert Table 3 Here ——

In the remaining columns of Table 3 Panel A, we display the effects of the technology on

organizational outcomes related to the quality of care. In Column 2 we find a large effect

on the likelihood that the patient is hospitalized, as opposed to being discharged home.

The decrease in this likelihood is around 7 percentage points, which represents around 27%

of the unconditional likelihood. To the extent that admission to the hospital represents

an acknowledgment that the patient has not improved sufficiently during her stay at the

Emergency ward, we can conclude that increasing the speed of information through the

introduction of the technology improved patient outcomes.17 Second, we find in Column 3

of Table 3 Panel A that this decrease in hospitalization happened without increasing the

likelihood that the patient would return to the ED in the next month. The estimate is

close to zero and is statistically insignificant, suggesting a safe discharge and thus an overall

improvement in the quality of care.

The leads and lags figures for these outcome variables can be found in Figure 1. For all

outcomes, the graph shows no significant differences between the private insurance ward and

the other ward in the months leading up to the introduction of the technology, providing

further support for our main findings. Moreover, Figure A.3 shows that the potential for

violation of the parallel trend assumptions that would invalidate the research approach is

17Conditional on two patients with the same initial condition (i.e., same initial vital signs, triage, entry time,
physician), hospitalization is likely to reflect a worse treatment for the condition than being discharged
home since it means that the patient was not able to recover sufficiently.
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much larger than they are according to Figure 1, providing additional support to the validity

of our econometric design.

Patients’ satisfaction We additionally find that the introduction of the technology im-

proved patient satisfaction with the care provided in the private insurance ward, relative to

the regular ward (Table 3 Panel B). This may have been driven either by the decreased time

taken to resolve their case or by the increased quality of care.

Our measures of patient satisfaction are based on a survey sent to a randomly-selected

subset of patients. We focus on three responses to the survey: (1) whether the patient

thought that the medical staff displayed the right attitude in the provision of care, (2)

whether the patient thought that the physician complied with good medical practices, and

(3) whether the patient believed that the physician was good at answering questions and

addressing potential concerns.18 Unfortunately, we only have these survey results for the

year 2022 and for a sample size of fewer than two thousand observations. As a result, the

specification for these variables is a DiD model that follows equation 1 (with coarser time

effects) and results are noisier.

Panel B of Table 3 displays the results of these estimations. We find that the introduction

of the technology had positive effects on patient satisfaction for all three measures. In terms

of magnitude, the improvement on the attitude question is .2, which represents 37% of

the .54 sample standard deviation. The increase in compliance and reported willingness to

answer questions are slightly smaller at around 26% and 31%, respectively. We also use as a

dependent variable the average of the three questions and find qualitatively similar results.

18Specifically, the questions in Spanish are ¿Cómo califica la atención médica? En terminos de: (1) Actitud
de Servicio, (2) Cumplimiento en la cita, (3) Información y respuesta a sus inquietudes.
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The effects are large in magnitude, which illustrates how faster and improved decisions

resulting from increasing information speed can have a meaningful impact on the way that

patients feel about the hospital service.

In Figure A.2, we plot the estimated leads and lags from equation (1) of patient satis-

faction. We find that patient satisfaction is not trending in any direction before July 2022,

after which there is a meaningful improvement in all three measures as well as the average.

Despite some noise in the estimates, Figures A.2 and A.3 (Honest DiD for the average of

the three patient satisfaction questions) suggest that technologies altering information speed

can meaningfully impact patient satisfaction.

Taken together, the results in this subsection show that increasing the speed of informa-

tion acquisition is associated with improved indicators of organizational performance: lower

costs, higher quality of care, and higher patient satisfaction.

7 Evidence on mechanisms

In this section, we provide suggestive evidence for Hypothesis 3: the mechanisms through

which the speed of information might improve decisions. We focus on two key channels:

changes in information acquisition and learning from data. We then explore evidence for

alternative mechanisms.

7.1 The information acquisition mechanism

First, we examine whether increasing the speed of information led to changes in information

acquisition choices by decision-makers, following Hypothesis 3(a). In Column 1 of Table 4,
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we replicate our baseline specification to examine whether physicians changed the number

of laboratory tests that they ordered. We find a precisely estimated negative coefficient:

on average, the number of tests ordered decreased by 10% following the introduction of

the technology. This finding suggests that increasing the speed of information led to more

efficient information acquisition choices, decreasing the amount of overtesting.

—— Insert Table 4 Here ——

We confirm this finding in Figure 1, where we find that the number of tests ordered

remained broadly unchanged in the months leading up to the introduction of the technology,

and then decreased around 20% in August 2022, consistent with the equivalent figure for

length of stay, as well as other organizational performance outcomes (Panels A, B, and C).

The similarity in the evolution of these outcomes suggests that the decrease in the number

of tests may have been a key mechanism enabling improved decisions.

We find that the largest reduction in the number of tests stemmed from the end of the

decision, suggesting that earlier tests may have been effective in finding a promising path to

diagnosis. Within the sample of cases where tests were ordered, we cut the length of stay

into quartiles for each case. Columns 4-7 in Table 4 show that the reductions in the number

of tests ordered stem mostly from the last quartile. This reinforces the idea that physicians

were able to make more efficient information acquisition choices earlier on, decreasing the

need to order additional tests at the end of their decision period.

Specialized and generic tests Next, we focus on classifying tests by type: specialized

and generic. Generic tests are those that are frequently used across a wide range of con-

ditions. For instance, Complete Blood Count (CBC) measures the levels of white and red
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blood cells as well as platelets. These tests are very frequent and at the same time generic as

they are commonly ordered to assess overall health and detect conditions such as anaemia,

infection, and leukaemia. Another example is the Urinalysis, which analyzes urine for various

substances that can indicate different conditions, such as such as urinary tract infections,

kidney disease, and diabetes. Infrequent tests are more specific and targeted, such as the An-

giotensin Converting Enzyme (ACE) test, which is used to monitor patients with diagnosed

sarcoidosis – a rare disease.

We thus define generic tests as those that were ordered in more than 50,000 cases (i.e.,

1% of the tests) across all cases occurring between 2016-2022.19 We find that physicians

significantly reduced orders of generic tests, focusing more on targeted tests (Columns 2 and

3 in Table 4).

Cases with and without tests Finally, we investigate if the improvements in decisions

arose from cases that required ordering tests.20 If information speed improves decisions

through the mechanism of changing information acquisition choices, then we should find

that cases that did not involve acquiring further information through laboratory tests (e.g.,

a sprained ankle) should not be affected strongly by the introduction of the technology.

Indeed, we find evidence consistent with this hypothesis (see Table A.2 and Table A.3).21

19We find similar results when we cut the data in alternative ways.
20To determine if a diagnosis requires a test, we focus on the 2022 period before the screen’s introduction
and count the tests each principal medical diagnosis required. If a diagnosis needs at least one test, we
categorize it as requiring a test.

21Table A.2 shows that the length of stay indeed decreases for cases in which tests were ordered, and not for
cases in which they were not. Column 2 shows a slightly negative but statistically insignificant effect of the
technology cases that do not involve ordering tests. However, the negative effect is precisely estimated and
larger in magnitude when we focus on cases for which physicians order tests (column 3). We further explore
the robustness of this result by using variation within the treated ward. Table A.3 shows a difference-in-
difference design depending on whether the patient had a diagnosis in which a laboratory test needed to
be ordered. We find that the length of stay decreases by about 20%, the total cost by 17%, the probability
of hospitalization by 4%, and the number of laboratory tests by 20% for patients with a diagnosis that
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These results suggest that increased information speed improved physicians’ information

acquisition choices, reducing the number of tests ordered and shifting them toward more

specialized tests.

7.2 The learning mechanism

We now explore the second mechanism: whether obtaining more timely information enabled

improved learning from the data required to make the decision (Hypothesis 3(b)). To do

this, we explore whether treatment effects were more likely to arise when the ward was busy

– when physicians experienced higher cognitive constraints that may have hindered learning.

Table 5 shows the results, cutting the sample by how busy the ward was. For each hour-

ward combination, we construct the ratio of patients per physician and label the ward as

busy if the ratio is larger than 2, which also represents the 75th percentile of the distribution

of patients per physician. Our interpretation of a busy ward is that physicians had more

pressure to switch from one patient to another patient. When physicians need to switch

across patients, it is likely more difficult to cognitively hold all details of each patient.

This means that increasing information speed might enable them to learn better from the

information by receiving it at a more optimal time.

—— Insert Table 5 Here ——

This table shows that the introduction of the technology indeed had a larger effect during

busy hours. For all of our outcome variables, the magnitude of the treatment estimate

during busy hours is nearly always more than double the estimate during non-busy hours.

This suggests that receiving information in real-time enabled them to make both faster and

require tests vis a vis other patients with a diagnosis that do not require laboratory tests.
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better decisions, possibly by enabling them to learn better from the information itself.

Common and uncommon diagnoses We also examine how the impact of the technology

differed depending on how common the patient’s case was – which determines the amount of

cognitive effort needed to make inferences and learn from the information acquired. Following

Hypothesis 3(b), if learning from information is a key driver, we would expect that the

effects should stem mainly from uncommon cases, which require physicians to think carefully

through potential hypotheses and diagnoses, compared to more common cases where the

diagnoses and necessary tests should be more routine and straightforward.

To investigate, we take the distribution of the universe of diagnoses of patients admitted

to the hospital during the period 2016-2022. We label a diagnosis as uncommon if it belongs

to the lowest 20th percentile of the distribution, and also examine robustness when cutting

at the median. This distribution is heavily concentrated as a few diagnoses represent a large

percentage of the population. Table A.4 shows that the effects of the technology on the

length of stay mainly occur in uncommon diagnoses when physicians must think through

their information acquisition choices, providing additional support for Hypothesis 3.

Mediation analysis To quantify the weight of each mechanism, we conduct a mediation

analysis following Heckman and Pinto (2015), focusing on how the information acquisition

mechanism mediates the relationship between changes in information speed and length of

stay. We report all details in Section A.1. Our findings show that the mediator ratio is

48%, indicating that about half of the treatment effect stems from physicians ordering fewer

tests (i.e., their information acquisition choices). This suggests that the remaining 52% of
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the effect may potentially be attributed to the mechanism of improved learning from the

information acquired.

7.3 Alternative mechanisms

In this section, we explore the plausibility of two alternative mechanisms that can have

important implications for the interpretation of our results. First, physicians may change

their behavior because of peer pressure, rather than increased information speed from the

technology adoption. Second, faster decisions (i.e., the decrease in the length of stay) may

be driven by the laboratory-processing division analyzing the results of the tests ordered by

the private ward more quickly.

Peer effects A potential alternative mechanism is that since the technology leads to other

physicians also being notified of test results’ statuses, it might increase the motivation of

physicians via peer effects. We explore this mechanism by examining treatment effects when

multiple physicians are working together, relative to when physicians are working alone – as

peer effects should only be triggered when another physician is present in the room.

Table A.5 shows that most of the treatment effects manifest when there is only one

physician in the room, suggesting that peer effects are unlikely to be a primary mechanism.

Reaction of the laboratory test unit We investigate whether the finding on faster

decisions could be attributed to expedited laboratory test processing for patients in the

treated private ward. Our partner organization maintains that this was not a contributing

factor. To verify this assertion, we conduct triple-difference estimations using the duration
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of test processing as the dependent variable. The results, presented in Table A.6, indicate

that the laboratory did not accelerate the processing of tests ordered for the private ward

following the implementation of the technology vis a vis the processing of tests ordered for

the non-private ward. This suggests that the observed effect on our measure of decision

speed, length of stay, is unlikely to be driven by changes in laboratory test processing times.

8 Discussion and conclusion

In this paper, we explore the impact of information speed on organizational decisions. We

find that beyond speeding up a decision, increasing the speed of information substantially im-

proves indicators of organizational performance – improving the throughput, cost efficiency,

and quality of care in the ED of a leading hospital.

We find that these improvements stem from two key channels. First, the speed of in-

formation enables more effective information acquisition choices: physicians order fewer and

more targeted tests. Second, information speed affects how decision-makers learn from the

information they acquire, enabling them to make better inferences by receiving information

at the time of decision – particularly for uncommon cases where they must think carefully

through the information and the potential diagnosis.

One notable aspect of our intervention is that decision-makers may not perceive benefits

even when they accrue to the organization. Interviews with physicians revealed that they did

not believe the technology improved outcomes. By the time positive effects were analyzed and

identified, there was opposition to the technology, which ultimately led to its discontinuation.

This is consistent with evidence from many organizations, including those in healthcare,

35



where decision-makers underestimate the benefits of a new technology and resist its adoption

(Kassirer, 2000; Benson, 2002; Lapointe and Rivard, 2006; Lin et al., 2012; Boeldt et al.,

2015; Gawande, 2018). This suggests that the impacts of technological changes need to

be measured and communicated quickly to gain organizational buy-in and enable informed

investment decisions.

Of course, our work is not without limitations. First, we are not able to observe all dimen-

sions of physicians’ actions, such as the time spent with each patient and their interaction

with other physicians. Second, although our partner organization is representative of a large

range of EDs in both developed and developing economies, our study focuses on physicians

in a single organization, which may limit the generalizability of our findings. We hope future

work can explore the extent to which our findings might extend to other contexts, as well as

identify their key boundary conditions.

More broadly, these findings suggest that we need to think more deeply about how orga-

nizations acquire and learn from information in the digital age. If a marginal improvement in

information speed can result in substantial speed-based advantages and enable key decision-

makers to improve their choices, this suggests that how organizations build in mechanisms

to learn from data may increasingly become a key source of competitive advantage.
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Figures and Tables

TABLE 1: SUMMARY STATISTICS

Obs. = 64,152; Patients = 43,607; Doctors = 387.

Mean SD p10 p25 p50 p75 p90

Outcome Variables:

Length of Stay (Days) .55 .66 .04 .1 .22 .79 2

Number of Tests 6.29 10.16 0 0 3 8 16

Total Cost 13.62 1.85 11.55 12.44 13.15 14.77 16.43

Hospitalization .25 .43 0 0 0 0 1

30-Day Return .13 .34 0 0 0 0 1

Independent Variables:

Private Ward .59 .49 0 0 1 1 1

Post June .51 .5 0 0 1 1 1

Selected Control Variables:

Male Patient .42 .49 0 0 0 1 1

Patient Age 47.47 19.29 23 31 45 62 75

Triage 1 .05 .22 0 0 0 0 0

Triage 2 .25 .44 0 0 0 1 1

Triage 3 .37 .48 0 0 0 1 1

Triage 4 .3 .46 0 0 0 1 1

Note: This table displays summary statistics for the main variables in the empirical analysis. Length of stay is the time between
triage and the departure of the patient from the ED (i.e. discharge or hospital admission). Number of tests is the number of
laboratory tests ordered during the patient stay in the ED. Total cost (defined as the log of the amount in Colombian Pesos
(COP) charged by the hospital to the patient for each episode). The hospital admission dummy takes value one if the patient
was admitted to the hospital instead of discharged home. The 30-day return dummy takes value one if the patient returns to
the ED within 30 days. The table also includes a dummy for the private ward and a dummy for episodes after June of each
year. Control variables include a dummy when the patient is male, the patient’s age, and a dummy for each one of the four
first triages. The sample includes the universe of medical episodes between March and October for two years: 2019 and 2022.
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TABLE 2: THE IMPACT OF INFORMATION SPEED
ON TIME TO DECISION

Dependent Variable = Log Length of Stay
(1) (2) (3) (4) (5) (6)

Post June X Private Ward X Year 2022 -.254 -.383 -.352 -.163 -.124 -.133
(.063) (.089) (.085) (.049) (.059) (.051)

Post June X Private Ward Yes Yes Yes Yes Yes Yes

Patient Controls X Year 2022 No No No Yes Yes Yes

Doctor Fixed Effects X Year 2022 No No Yes Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 No Yes Yes Yes Yes Yes

Date X Hour Fixed Effects No Yes Yes Yes Yes Yes

Post June X Year 2022 Yes No No No No No

Private Ward X Year 2022 Yes No No No No No

Observations 63,025 61,750 61,612 62,618 40,830 61,600

Note: This Table displays estimates of regressions of a case’s length of stay in the ED on the period during which the technology
was introduced (i.e. after June), interacted with the ward in which it was introduced (i.e. private ward) and with the year 2022
dummy. The unit of observation is a case i arriving at the ED. The estimating equation in Column 4 is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in which
the patient arrived and d indexes the physician to which the patient was assigned. The main independent variable of interest
is the interaction between being assigned to the private ward, arriving in the months between July and October, and arriving
in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour-fixed effects, as well
as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon
admission). All the patient controls are interacted with the year 2022 dummy. In Column 1 we display the most streamlined
triple-differences model, which only includes a post dummy and a private dummy as controls, interacted with each other and
with the year 2022 dummy, this regression includes all triages in its estimation and length of stay is not winsorized. In Column
2 we include the insurance status and the hour fixed effects (which subsume the year 2022 and private ward dummies), this
regression includes all triages in its estimation, and the length of stay is not winsorized. In Column 3 we add the physician
fixed effects, this regression includes all triages in its estimation, and length of stay is not winsorized. In Column 4 we add the
patient controls and the top and bottom 1% of the length of stay distribution is winsorized, this regression includes all triage
in its estimation. In Column 5 we add the patient controls and the sample includes only triage levels 1–3 and the length of stay
is not winsorized. Column 6 is the baseline model for the full sample, this regression includes all triages in its estimation, and
length of stay is not winsorized. Standard errors are clustered at the physician level.
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TABLE 3: THE IMPACT OF INFORMATION SPEED ON
OTHER ORGANIZATIONAL OUTCOMES

PANEL A: EFFECTS ON COSTS AND QUALITY OF CARE

(1) (2) (3)
Dependent Variable = Total Hospitalization 30–Day

Cost Return

Post June X Private Ward X Year 2022 -.255 -.071 .01
(.059) (.014) (.013)

Patient Controls X Year 2022 Yes Yes Yes

Doctor Fixed Effects X Year 2022 Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes

Observations 62,546 62,650 62,650

PANEL B: EFFECTS ON PATIENT SATISFACTION

(1) (2) (3) (4)
Attitude Compliance Answering Average

Questions

Post June X Private Ward .201 .156 .18 .171
(.059) (.064) (.058) (.057)

Patient Controls Yes Yes Yes Yes

Doctor Fixed Effects Yes Yes Yes Yes

Insurance Status Fixed Effects Yes Yes Yes Yes

Month Fixed Effects Yes Yes Yes Yes

Mean Dep. Var. 3.68 3.6 3.65 3.62
SD Dep. Var. .54 .59 .58 .54
Observations 1,445 1,233 1,443 1,232

Note: Panel A table displays estimates of regressions of a case’s different medical outcomes in the ED on the period
during which the technology was introduced (i.e. after June), interacted with the ward in which it was introduced (i.e. private
ward) and with the year 2022 dummy. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

The model controls for insurance status (which subsumes the assigned ward), physician and hour-fixed effects, as well as patient
controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission).
In column 1, the dependent variable is the total cost (defined as the log of the amount in Colombian Pesos (COP) charged by
the hospital to the patient for each episode). In Column 2, the dependent variable is a dummy if the patient is hospitalized.
In Column 3, the dependent variable is a dummy that takes the value of 1 if the patient returns to the ED within a 30-days
period. All the controls are interacted with the year 2022 dummy. Panel B table displays estimates of regressions of patients’
evaluations in the ED on the period during which the technology was introduced, and interacted with the ward in which it was
introduced. The estimating equation is:

yi = β(Privatew(i) × Postt(i)) + αd(i) + θw(i) + πt(i) + γ
′Xi + ϵi

The main independent variable of interest is the interaction between being assigned to the private ward and arriving in the
month of July or after. The model controls for insurance status (which subsumes the assigned ward), physician and month-fixed
effects, as well as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs
markers upon admission). For both panels where w indexes the ward to which the patient is assigned, t indexes the month in
which the patient arrived, and d indexes the physician to which the patient was assigned. The unit of observation is a case i
arriving to the ED. Standard errors are clustered at the physician level.
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TABLE 4: EVIDENCE ON THE INFORMATION ACQUISITION MECHANISM

Log. Number Type of Tests Percentiles
of Tests Targeted Generic 0–25 25–50 50–75 75–100

Post June X Private Ward X Year 2022 -.102 -.042 -.102 -.021 -.117 -.001 -2.335
(.037) (.032) (.034) (.034) (.123) (.326) (.53)

Post June X Private Ward Yes Yes Yes Yes Yes Yes Yes

Patient Controls X Year 2022 Yes Yes Yes Yes Yes Yes Yes

Doctor Fixed Effects X Year 2022 Yes Yes Yes Yes Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 Yes Yes Yes Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Observations 62,650 62,650 62,650 30,163 5,886 1,483 1,315

Note: This Table displays estimates of regressions of the log. of the number of tests on the period during which the technology was introduced (i.e. after June), interacted
with the ward in which it was introduced (i.e. private ward) and with the year 2022 dummy. To determine whether the test is generic, we defined it as 1 (generic) if the test
category appears in 50.000 (the median value) or more episodes and 0 otherwise. 50.000 episodes represent the 99% percentile of the distribution of laboratory tests. The last
four columns show the effect of the interaction term on the log number of tests cutting the sample into 4 quartiles of the length of stay. For instance, the column 0-25 shows
the effect of the change of the speed on information on the number of tests for the first quarter of the episode. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in which the patient arrived and d indexes the physician
to which the patient was assigned. The main independent variable of interest is the interaction between being assigned to the private ward, arriving in the months between July
and October, and arriving in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour fixed effects, as well as patient controls
(age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission) interacted with the year 2022 dummy. Standard errors are
clustered at the physician level.
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TABLE 5: EVIDENCE CONSISTENT WITH THE LEARNING MECHANISM

Log. Length Total Hospitalization 30–Day Log. Number
of Stay Cost Return of Tests

Busy Non-Busy Busy Non-Busy Busy Non-Busy Busy Non-Busy Busy Non-Busy

Post June X Private Ward X Year 2022 -.533 -.132 -.438 -.328 -.144 -.057 .054 .001 -.497 -.108
(.211) (.062) (.242) (.077) (.051) (.017) (.063) (.015) (.154) (.043)

Patient Controls X Year 2022 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Doctor Fixed Effects X Year 2022 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 17,889 43,064 18,151 43,773 18,190 43,839 18,190 43,839 18,190 43,839

Note: This Table displays estimates of regressions of a case’s log length of stay, total cost, Hospitalization, 30-day return, and log of the number of tests in the ED on the period
during which the informational screen was introduced (i.e. after June), interacted with the ward in which it was introduced (i.e. private ward) and with the year 2022 dummy.
This table shows results for different samples according to busy or non-busy hours. The percentile 75 for the patient-physician ratio is near 2 patients per physician. So, busy
hours are defined as hours where there are more than 2 patients per physician. The unit of observation is a case i arriving at the ED. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in which the patient arrived and d indexes the physician
to which the patient was assigned. The main independent variable of interest is the interaction between being assigned to the private ward, arriving in the months between July
and October, and arriving in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour fixed effects, as well as patient controls
(age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission) interacted with the year 2022 dummy. In Columns 1-2, the
dependent variable is the length of stay. In Columns 3-4, the dependent variable is the total cost (defined as the log of the amount in Colombian Pesos (COP) charged by the
hospital to the patient for each episode). In Columns 5-6, the dependent variable is a dummy if the patient is hospitalized. In Columns 7-8, the dependent variable is a dummy
that takes the value of 1 if the patient returns to the ED within a 30-days period. In Columns 9-10, the dependent variable is the number of tests. Within a pair of columns,
the first column of each dependent variable shows the busy sample while the second column shows the non-busy sample. Standard errors are clustered at the physician level.
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FIGURE 1: LEADS AND LAGS EVIDENCE (TRIPLE-DIFF)

This Figure displays dynamic estimates of regressions of a case’s length of stay in the ED on the period
during which the technology was introduced and interacted with the ward in which it was introduced (i.e.
prepaid ward) and the year 2022. The unit of observation is a case i arriving at the ED. This figure displays
the coefficients βj from estimating:

yi =
7−8,9−10
∑

t=2−3,4−5
βj(Privatew(i) ×Monthjt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ

′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day
combination) in which the patient arrived, and d indexes the physician to which the patient was assigned.
The model controls for insurance status (which subsumes the assigned ward), physician and hour-fixed
effects, as well as patient controls (age, gender, and health markers upon admission) interacted with the year
dummy 2022. Standard errors are clustered at the physician level. To show longer dynamics we increase our
sample from March to October (as the rest of the paper), to February to October.
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Online Appendix

A.1 Mediation analysis

While identifying the quantitative importance of different mechanisms is a notoriously difficult exercise, in

this subsection we examine whether any share in the decrease in the length of stay may be independent

from the effects on the number of tests. Firstly, we estimate equation (2) while controlling for the number

of tests ordered. We display the results in Column 4 Table A.1. We find there that the baseline triple-

differences coefficient decreases in magnitude, and becomes not statistically significant. That is, the decrease

in the length of stay becomes much smaller if one holds the number of tests ordered constant. We interpret

this result as additional supportive evidence on the information acquisition mechanism – that increasing

information speed had an effect in organizational outcomes through the laboratory tests that physicians

chose to order.

While enlightening, the evidence in Column 4 Table A.1 can at best only be regarded as suggestive,

given that the regressions are controlling for explicitly endogenous variables. For a more systematic analysis,

we follow Heckman and Pinto (2015) in quantifying the relative importance of our mediating variable in the

estimated decrease in length of stay. Heckman and Pinto (2015) consider an initial model yi = β1 ⋅Ti+β2Xi+ϵi

where Ti is the introduction of the technology and Xi is a set of controls. The method decomposes the effect

of the treatment into two parts:
dy

dT
=

∂y

∂M

∂M

∂T
+R (A.1)

where M is the mediator –Number of Tests–. From (A.1) it is possible to isolate R given information on all

other three elements. To do this, we substitute dy
dT

by the β̂ from (2) where length of stay is the dependent

variable. Secondly, we estimate β̂inter =
∂M
∂T

from again regressing (2) but now having the mediator variable

as the dependent variable. Lastly, we add the mediator M as an additional independent variable in (2) and

obtain its estimated coefficient β̂med, which we take as an approximation to ∂y
∂M

. We can then define the

ratio of mediator j as:

β̂med(j) × β̂inter(j)
β̂

We find that the mediator ratio is 48%, suggesting that around half of the treatment effect is due to physicians

choosing to acquire different information (in this case, by ordering fewer tests). This implies that around

52% of the effect is independent of the mediating variable – which may be driven by other mechanisms such

as the type of tests ordered, as well as the ability to learn better from the information acquired.
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Figures and Tables

TABLE A.1: BASELINE FINDINGS

Dependent Variable = Log Length of Stay
(1) (2) (3) (4)
DiD Placebo DiD Baseline DiDiD Baseline DiDiD

Year = 2022 2019 2019&2022 2019&2022

Post June X Private Ward -.247 -.115 -.115 -.095
(.043) (.026) (.026) (.019)

Post June X Private Ward X Year 2022 -.133 -.051
(.051) (.033)

Log Number of Tests .777
(.011)

Patient Controls Yes Yes Yes Yes

Doctor Fixed Effects Yes Yes Yes Yes

Insurance Status Fixed Effects Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes

Interactions with 2022 dummy No No Yes Yes

Observations 29,108 32,492 61,600 61,600

Note: This Table displays estimates of regressions of a case’s length of stay in the ED on the period during which the technology
was introduced (i.e. after June), interacted with the ward in which it was introduced (i.e. private ward). The unit of observation
is a case i arriving at the ED. The estimating equation in Columns 1 and 2 is:

yi = β(Privatew(i) × Postt(i)) + αd(i) + θin(i) + πt(i) + γ
′Xi + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in
which the patient arrived and d indexes the physician to which the patient was assigned. Column 1 (2) shows the results of
running this regression only for 2022 (2019). The main independent variable of interest is the interaction between being assigned
to the private ward and arriving in the month of July or after. The model controls for insurance status (which subsumes the
assigned ward), physician and hour-fixed effects, as well as patient controls (age, gender, dummies for the main diagnosis, as
well as dummies for extreme vital signs markers upon admission). In Column 2 we repeat the Column 1 exercise on the placebo
sample of 2019. In Columns 3 and, 4 the sample includes cases from both 2019 and 2022. The main independent variable of
interest is the triple interaction between the private ward, the after-June dummy, and the 2022 dummy. The model controls
for the interactions between all the controls and the year 2022 dummy. Standard errors are clustered at the physician level.
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TABLE A.2: LENGTH OF STAY
WITH AND WITHOUT TESTS

(1) (2) (3)
All Without With

Episodes Tests Tests

Post June X Private Ward X Year 2022 -.133 -.072 -.156
(.051) (.067) (.052)

Post June X Private Ward Yes Yes Yes

Patient Controls X Year 2022 Yes Yes Yes

Doctor Fixed Effects X Year 2022 Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes

Post June X Year 2022 No No No

Private Ward X Year 2022 No No No

Observations 61,600 20,892 37,270

Note: This Table displays estimates of regressions of a case’s length of stay in the ED on the period during which the informa-
tional screen was introduced (i.e. post 18 June), interacted with the ward in which it was introduced (i.e. private ward) and
with the year 2022 dummy. The unit of observation is a case i arriving at the ED. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in
which the patient arrived and d indexes the physician to which the patient was assigned. The main independent variable of
interest is the interaction between being assigned to the private ward, arriving in the months between July and October, and
arriving in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour fixed effects,
as well as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers
upon admission) interacted with the year 2022 dummy. Column 1 includes all episodes. Column 2 only includes episodes in
which no tests were requested, while Column 3 only includes episodes in which there was at least one requested test. Standard
errors are clustered at the physician level.
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TABLE A.3: THE IMPACT OF DIAGNOSTIC WITH TESTS ON MAIN
OUTCOMES

(1) (2) (3) (4) (5)
Dependent Variable = Log. Length Total Hospital. 30–Day Log. Number

of Stay Cost Return of Tests

Post June X Diag. with Test -.203 -.173 -.04 .001 -.197
(.05) (.062) (.017) (.017) (.036)

Patient Controls X Year 2022 Yes Yes Yes Yes Yes

Dr. Fixed Effects X Year 2022 Yes Yes Yes Yes Yes

Ins. Fixed Effects X Year 2022 Yes Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes Yes

Observations 35,712 36,066 36,100 36,100 36,100

Note: This table displays estimates of regressions of a case’s different medical outcomes in the ED on the period dur-
ing which the technology was introduced (i.e. after June), interacted with a dummy equal to 1 for diagnosis with tests (defined
as a diagnosis that received at least one test in the first semester of 2022 (excluding June)) and 0 otherwise. The estimating
equation is:

yi = β(×Postt(i) ×DiagTesti) + αd(i) + θw(i) + πt(i) + γ
′
(Xi) + ϵi

The model controls for insurance status (which subsumes the assigned ward), physician and hour-fixed effects, as well as patient
controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission).
In column 1, the dependent variable is the case’s length of stay in the ED. In column 2, the dependent variable is the total
cost (defined as the log of the amount in Colombian Pesos (COP) charged by the hospital to the patient for each episode). In
Column 3, the dependent variable is a dummy if the patient is hospitalized. In Column 4, the dependent variable is a dummy
that takes the value of 1 if the patient returns to the ED within a 30–day period. The last column has the logarithm of the
number of tests as dependent variables. Standard errors are clustered at the physician level.

4



TABLE A.4: LENGTH OF STAY BY DIAGNOSIS CLASSIFICATION

(1) (2) (3) (4) (5)
All Common (20/80 Spilt) Uncommon (20/80 Spilt) Common (50/50 Spilt) Uncommon (50/50 Spilt)

Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis

Post June X Private Ward X Year 2022 -.133 .019 -.378 -.13 -.427
(.051) (.13) (.079) (.082) (.092)

Patient Controls X Year 2022 Yes Yes Yes Yes Yes

Doctor Fixed Effects X Year 2022 Yes Yes Yes Yes Yes

Insurance Status Fixed Effects X Year 2022 Yes Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes Yes

Observations 61,600 9,977 47,651 24,385 33,735

Note: This Table displays estimates of regressions of a case’s log. length of stay. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day combination) in which the patient arrived and d indexes the physician
to which the patient was assigned. The main dependent variable of interest is the length of stay. The model controls for insurance status (which subsumes the assigned ward),
physician and hour fixed effects, as well as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission)
interacted with the year 2022 dummy. Standard errors are clustered at the physician level. Column 1 includes episodes of all the diagnoses. Column 2 includes only the common
diagnosis and Column 3 includes the uncommon diagnosis, both based on a 20%–80% distribution cut. Column 4 includes only the common diagnosis and Column 5 includes
the uncommon diagnosis, both based on a 50%–50% distribution cut.
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TABLE A.5: LIMITED EVIDENCE OF PEER EFFECTS

Log. Length Log. Number Total Hospitalization 30-Day
of Stay of Tests Cost Return

Number of Drs. Number of Drs. Number of Drs. Number of Drs. Number of Drs.
1 2+ 1 2+ 1 2+ 1 2+ 1 2+

Post June X Private Ward X 2022 -.251 -.068 -3.617 -.294 -.605 -.055 -.174 -.02 .027 -.018
(.021) (.056) (.294) (1.306) (.055) (.131) (.014) (.04) (.018) (.036)

Patient Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Doctor Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Insurance Status Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Date X Hour Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 46,629 12,829 46,629 12,829 46,562 12,796 46,629 12,829 46,629 12,829

Note: This Table displays estimates of regressions of a case’s number of physicians working in an episode on patient outcomes on the period during which the informational
screen was introduced (i.e. after June), interacted with the ward in which it was introduced (i.e. private ward) and with the year 2022 dummy. To define the number of
physicians working in an hour–ward–episode, we count the total number of physicians that are directly treating patients, that are requesting tests for patients, or that close any
ED episode. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date–hour of day combination) in which the patient arrived and d indexes the physician
to which the patient was assigned. The main independent variable of interest is the interaction between being assigned to the private ward, arriving in the months between July
and October, and arriving in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour fixed effects, as well as patient controls
(age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers upon admission) interacted with the year 2022 dummy. Sample changes for
each column depending on the number of physicians working on an episode (treatment physician and other physicians who request tests). Standard errors are clustered at the
physician level.
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TABLE A.6: LENGTH OF TEST PROCESSING

(1) (2) (3) (4) (5)

Post June X Private Ward X Year 2022 -.001 .005 .009 .045 -.026
(.035) (.034) (.034) (.033) (.031)

Patient Controls X Year 2022 Yes No Yes Yes Yes

Doctor Fixed Effects Yes Yes No Yes Yes

Insurance Status Fixed Effects Yes Yes Yes No Yes

Date X Hour Fixed Effects Yes Yes Yes Yes No

Observations 37,555 37,555 37,701 37,555 39,507

Note: This Table displays estimates of regressions of a case’s the total time that the test took to be delivered in the laboratory
department on the period during which the technology was introduced (i.e. after June), interacted with the ward in which it
was introduced (i.e. private ward) interacted with the year 2022. The unit of observation is a case i arriving at the ED. The
estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + αd(i) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date–hour of day combination) in
which the patient arrived, and d indexes the physician to which the patient was assigned. The main independent variable of
interest is the interaction between being assigned to the private ward, arriving in the months between July and October, and
arriving in 2022. The model controls for insurance status (which subsumes the assigned ward), physician and hour–fixed effects,
as well as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital signs markers
upon admission) interacted with the 2022 dummy. Standard errors are clustered at the physician level.
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FIGURE A.1: EXOGENEITY

Note: This figure displays coefficients of different regressions for the following dependent variables yi:

Patient Gender (dummy defined as 1 for men and 0 for women), Patient Age dummy defined as 1 for patients

whose age is above the median and 0 otherwise, Extreme Vital Signs (diastolic pressure, heart rate, arterial

pressure, systolic pressure and oxygen saturation), Dr. Age dummy defined as 1 for physicians whose age is

above the median and 0 otherwise, Dr. Gender (dummy defined as 1 for men and 0 for women), low triage

dummy defined as 1 for triages 1 and 2 and 0 otherwise. The estimating equation is:

yi = β(Privatew(i) × Postt(i) × 2022t(i)) + θw(i) + πt(i) + γ
′
(Xi × 2022t(i)) + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date–hour of day

combination) in which the patient arrived and d indexes the physician to which the patient was assigned. The

model controls for insurance status (which subsumes the assigned ward), physician and hour fixed effects, as

well as patient controls (age, gender, dummies for the main diagnosis, as well as dummies for extreme vital

signs markers upon admission) interacted with the year 2022 dummy. When the variable is the dependent

variable, it is excluded from the control list. For instance, for the first variable, the dependent variable is

patient gender and in this case, is excluded from the list Xi. Standard errors are clustered at the physician

level.
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FIGURE A.2: LEADS AND LAGS EVIDENCE DOUBLE-DIF

This Figure displays dynamic estimates of regressions of a case’s survey evaluation on the period during

which the technology was introduced (i.e. after June), interacted with the ward in which it was introduced

(i.e. private ward). The unit of observation is a case i arriving at the ED. This figure displays the coefficients

βt from estimating:

yi =
7−8,9−10
∑

t=2−3,4−5
βt(Prepaidw(i) ×Montht(i)) + αd(i) + θw(i) + πt(i) + γ

′Xi + ϵi

where w indexes the ward to which the patient is assigned, t indexes the exact hour (i.e. date/hour of day

combination) in which the patient arrived, and d indexes the physician to which the patient was assigned.

The main independent variable of interest is the interaction between being assigned to the prepaid ward and

arriving after June. The model controls for insurance status (which subsumes the assigned ward), physician

and hour-fixed effects, as well as patient controls (age, gender, and health markers upon admission). Standard

errors are clustered at the physician level.
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FIGURE A.3: HONEST DiD

(a) Length of Stay (b) Total Cost (c) Hospitalization

(d) Reincidence
(e) Average Patient

Satisfaction

Note: These figures display coefficients for sensitivity analysis before and after the treatment. It shows

a robust confidence interval for different values of proportional violation of parallel trends assumption. The

value equal to 1, for instance, imposes that the post–treatment violation of parallel trends is no longer than

the worst pre–treatment violation of parallel trends (between consecutive periods). Likewise, a value of 2

implies that the post–treatment violation of parallel trends is no more than twice that in the pre–treatment

period. Where the coefficients cross the zero line (breakdown value), it means that the significant result is

robust to allowing for violations of parallel trends up to the value and as big as the max violation in the

pre–treatment period.
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